
EXTENDING DIFFERENTIAL FAULT ANALYSIS TO DYNAMIC S-BOX

ADVANCED ENCRYPTION STANDARD IMPLEMENTATIONS

THESIS

Bradley M. Flamm, Civilian

AFIT-ENG-T-14-S-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-T-14-S-08

EXTENDING DIFFERENTIAL FAULT ANALYSIS TO DYNAMIC S-BOX

ADVANCED ENCRYPTION STANDARD IMPLEMENTATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Bradley M. Flamm, B.S.M.

Civilian

September 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-T-14-S-08

EXTENDING DIFFERENTIAL FAULT ANALYSIS TO DYNAMIC S-BOX

ADVANCED ENCRYPTION STANDARD IMPLEMENTATIONS

Bradley M. Flamm, B.S.M.
Civilian

Approved:

//signed//

Maj Thomas E. Dube, PhD (Chairman)

//signed//

Dr. Brett J. Borghetti (Member)

//signed//

Dr. Mark E. Oxley (Member)

2 Sep 2014

Date

2 Sep 2014

Date

2 Sep 2014

Date

AFIT-ENG-T-14-S-08
Abstract

Advanced Encryption Standard (AES) is a worldwide cryptographic standard for

symmetric key cryptography. Many attacks try to exploit inherent weaknesses in the

algorithm or use side channels to reduce entropy. At the same time, researchers strive

to enhance AES and mitigate these growing threats. This paper researches the extension

of existing Differential Fault Analysis (DFA) attacks, a family of side channel attacks,

on standard AES to Dynamic S-box AES research implementations. Theoretical analysis

reveals an expected average keyspace reduction of 2−88.9323 after one faulty ciphertext

using DFA on the State of Rotational S-box AES-128 implementations. Experimental

results revealed an average 2−88.8307 keyspace reduction and confirmed full key recovery

is possible.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

List of Figures . viii

List of Acronyms . xi

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Objectives . 1
1.3 Scope and Limitations . 3
1.4 Approach . 3
1.5 Thesis Organization . 3

II. Background . 4

2.1 Cryptology . 4
2.1.1 Properties . 5
2.1.2 Attacks . 5
2.1.3 Algorithms . 6

2.2 AES . 7
2.2.1 Galois Field 28 . 8
2.2.2 State Operations . 11
2.2.3 Encryption . 13
2.2.4 Decryption . 14
2.2.5 Key Expansion Algorithm . 16

2.3 Dynamic S-box . 19
2.3.1 Rotational S-box . 19
2.3.2 Chaotic S-box . 21
2.3.3 Reduction S-box . 21
2.3.4 Switch S-box . 21

2.4 Brute Force Attacks . 21
2.4.1 Time/Memory Trade-off . 22
2.4.2 Brute Force Mitigation Techniques 22

2.5 Differential Fault Analysis . 24
2.5.1 DFA on the State . 25

v

Page

2.5.2 DFA on the Key Schedule . 26
2.5.3 Round Modification Analysis . 27
2.5.4 DFA on the Algorithm . 28
2.5.5 DFA Mitigation Techniques . 28

2.6 Background Summary . 28

III. Theoretical Attack Analysis . 29

3.1 Problem Definition . 29
3.1.1 Goals and Hypothesis . 29
3.1.2 Approach . 29

3.2 Attack Targets and Sources . 30
3.2.1 Potential Attack Targets . 30
3.2.2 Attack Target Implementation . 31
3.2.3 Potential Attack Sources . 34
3.2.4 Attack Source Implementation . 35

3.3 Attack Analysis . 41
3.3.1 Rotation Step Analysis . 41
3.3.2 Mapping Rotate to an Operation in GF(28) 44
3.3.3 Alternate Attack Analysis on Standard AES 44
3.3.4 General Extension . 46
3.3.5 Reversing the Key Schedule . 47

3.4 Theoretical Attack Summary . 48

IV. Methodology . 49

4.1 Problem Definition . 49
4.1.1 Goals and Hypothesis . 49
4.1.2 Approach . 49

4.2 System Boundaries . 50
4.3 System Services . 51
4.4 Workload . 51
4.5 Performance Metrics . 51
4.6 System Parameters . 52
4.7 Factors . 52
4.8 Evaluation Technique . 53
4.9 Experimental Design . 54
4.10 Methodology Summary . 55

V. Analysis of Experimental Attack Results . 56

5.1 Existing Attack . 56

vi

Page

5.2 Attack Extension . 62
5.3 Design Suggestions . 71
5.4 Analysis Summary . 73

VI. Conclusion . 74

6.1 Impact . 74
6.2 Contributions . 74
6.3 Future Work . 75

Appendix A: Discussion of Rotational S-box Design Decisions 77

Appendix B: RAES Validation Data . 87

Bibliography . 92

vii

List of Figures

Figure Page

2.1 High-Level Encryption and Decryption. 4

2.2 AES Pseudocode Based on [8]. 7

2.3 Generic AES State Representation with Byte Indexing. 8

2.4 AES S-box. 11

2.5 AES Shift Row operation. 12

2.6 Mix Column Example. 12

2.7 Generic Add Key Step. 13

2.8 Logical AES-128 Encryption. 14

2.9 AES-128 Encryption. 15

2.10 Logical AES-128 Decryption. 16

2.11 AES-128 Key Schedule. 18

2.12 Reversal of the AES-128 Key Schedule. 20

2.13 DFA on the State Fault Propagation in AES-128 [16]. 25

2.14 DFA on the Key Schedule Fault Propagation in AES-128 [17]. 26

2.15 DFA on the Key Schedule Fault Propagation in AES-128 [17]. 27

3.1 Logical RAES-128 Encryption. 32

3.2 Logical RAES-128 Decryption. 34

3.3 XOR of Correct and Faulty AES-128 Encryption, Rounds 8-10. 36

3.4 XOR of Correct and Faulty AES-128 MC Operation. 37

3.5 XOR MC Walkthrough. 37

3.6 XOR of Correct and Faulty AES-128 AK Operation. 38

3.7 XOR of Correct and Faulty AES-128 SB Operation. 38

3.8 XOR of Correct and Faulty AES-128 SR Operation. 39

viii

Figure Page

3.9 RAES S-box0. 42

3.10 RAES S-box1. 42

3.11 RAES S-box2. 42

3.12 XOR of Correct and Faulty RAES-128 Encryption, Rounds 8-10. 45

3.13 XOR of Correct and Faulty AES-128 Encryption, Round 10. 45

4.1 System Boundaries. 50

4.2 Factors and Levels. 53

5.1 Histogram of AES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction. 57

5.2 Boxplot of AES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction. . 57

5.3 Quartiles of AES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction. 58

5.4 Boxplot of Log2 Transformed AES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction. 58

5.5 Histogram of Log2 Transformed AES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction. 59

5.6 Histogram of AES-128 10K Keyspace, 2 Faulty Ciphertext Round 10 Reduction. 61

5.7 Histogram of AES-128 DFA Runtime. 62

5.8 Boxplots of Log2 Transformed RAES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction. 63

5.9 Tukey Multiple Comparisons of Means Test of RAES-128 Types, 1 Faulty

Ciphertext Round 10 Reduction. 63

5.10 Histogram of RAES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction. 64

5.11 Quartiles of RAES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction. 65

5.12 Histogram of Log2 Transformed RAES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction. 65

5.13 Histogram of Remaining R10, 2 Faulty Ciphertext Round 10 Reduction. 68

ix

Figure Page

5.14 Histogram of Log2 Transformed Observed/2 RAES-128 10K Keyspace, 2

Faulty Ciphertext Round 10 Reduction. 69

5.15 Histogram of Observed/2 RAES-128 10K Keyspace, 3 Faulty Ciphertext Round

10 Reduction. 69

5.16 Histogram of Required Cipher Pairs for Full Key Recovery on RAES-128. . . . 70

5.17 Histogram of RAES-128 DFA Runtime. 71

A.1 AES-KDS Validation Encryptions [22]. 84

B.1 AES-128 Encryption and Expanded Key of [1] Example Data. 87

B.2 RAES-128 Type 1 Encryption and Expanded Key of [1] Example Data. 88

B.3 RAES-128 Type 2 Encryption and Expanded Key of [1] Example Data. 89

B.4 RAES-128 Type 3 Encryption and Expanded Keys of [1] Example Data. 90

B.5 RAES-128 Type 4 Encryption and Expanded Keys of [1] Example Data. 91

x

List of Acronyms

Acronym Definition

AES Advanced Encryption Standard

AK AddRoundKey

CUT Component Under Test

DFA Differential Fault Analysis

DFE Differential Fault Equations

MC MixColumns

NIST National Institute of Standards and Technology

RAES Rotational S-box AES

rcon RoundConstant

RMA Round Modification Analysis

RRA Round Reduction Analysis

RW RotateWord

S-box Substitution Box

SB SubBytes

SBR S-boxRotation

SR ShiftRows

SUT System Under Test

SW SubWord

xi

EXTENDING DIFFERENTIAL FAULT ANALYSIS TO DYNAMIC S-BOX

ADVANCED ENCRYPTION STANDARD IMPLEMENTATIONS

I. Introduction

1.1 Motivation

Data security is a growing concern as more information transitions into digital formats.

Toward this end, the National Institute of Standards and Technology (NIST) establishes

the encryption algorithm standards and best practices within the United States. The

current standard for general purpose data encryption, established in 2001, is the Advanced

Encryption Standard (AES) [1]. As the quantity and sensitivity of data entrusted to AES

grows, so does the incentive to compromise and reveal these secrets, thus many attacks

try to exploit inherent weaknesses in the algorithm or use side channels to reduce entropy,

such as Differential Fault Analysis (DFA). At the same time, continuing research strives to

bolster the security of AES and mitigate these growing threats. One such area of research

replaces a static component of the AES algorithm, the Substitution Box (S-box), with a

dynamic version. This research extends an existing DFA attack to several research based

Dynamic S-box AES implementations.

1.2 Research Objectives

The following itemizes the objectives of this research.

• Determine if current DFA attacks extend to Dynamic S-box AES variants. Both

cryptanalysis and cryptography are complex and dependent on the smallest details.

The consequences of changing any part of the target algorithm are not obvious, and

refitting an existing attack to a similar but new algorithm is non-trivial.

1

• Reveal expected keyspace reduction power of DFA extensions. Existing attacks

use probabilistic theoretical analysis for computing expected keyspace reduction

power.

• Build functional attacks which demonstrate full key and plaintext recovery.

Working examples of encryption and attack variants enable verification of theoretical

results while providing tools for future use and analysis.

• Provide an easy to follow and self-contained resource which walks through

the mechanics and analysis of DFA attacks. Current research provides pointed

discussions of advanced methods [7, 9, 16–18, 24, 26], however basic understanding

requires less powerful methods [4, 13, 28]. Although fragmenting analysis makes

new research lightweight, it burdens nonexperts.

• Improve the overall security analysis of Dynamic S-box AES variants. Often,

research does not thoroughly test new encryption proposals. Certain test suites

and standards exist which ensure a few properties hold which are necessary, but

not sufficient for a secure cryptographic system [3]. Rigorous analysis and testing

of algorithms requires significant time, expertise and incentive. Thus, both white

and black hats often focus on widespread standards over young and unadopted

alternatives.

• Contribute to the literature of theoretical analysis. Existing work provides high-

level analysis, but often omit lower level details and actual data. This research aims

to address all levels of analysis, and building functional attacks creates actual data to

verify existing and new theoretical claims.

• Help inform and shape future discussions of cryptographic standards and

algorithmic design decisions.

2

1.3 Scope and Limitations

This research considers all DFA attacks as possible sources of extension, and considers

all Dynamic S-box AES implementations as possible targets over which to extend. All

analysis performed only applies to specific source-target implementation pairs chosen, but

the leveraged concepts may yield results on other sources and targets. Due to the high level

of complexity and resources required for actual realization of DFA attacks, this research

instead relies on software simulated implementations.

1.4 Approach

Extending DFA attacks to AES variants is an untouched area of research. As the

founding work, this research focuses on the simplest, non-trivial and interesting target-

source combination. Background on each target and source enables a brief analysis for

choosing this target-source combination. This research then extends the existing source

DFA analysis to the chosen target AES variant. Implementing this new extended attack in

software validates the new theoretical analysis and demonstrates actual realization.

1.5 Thesis Organization

The remainder of this document is as follows: Chapter 2 walks through the existing

research including some basics of cryptography and field theory, current Dynamic S-box

AES designs, and an overview of the existing DFA attacks on AES. Chapter 3 is a practice

in theory, explicitly defining AES variants and performing the theoretical analysis of DFA

extensions. Chapter 4 describes the methodology used to test and validate these attack

extensions. Chapter 5 discusses the experimentation results, specifically their significance

and how well they align with the theoretical analysis of Chapter 3. Lastly, Chapter 6

summarizes this work and discusses future areas of related research.

3

II. Background

This chapter covers a few basics of cryptology in Section 2.1, then walks through AES-

128 in Section 2.2 and a few basics of field mathematics in Section 2.2.1. A discussion of

Dynamic S-box schemes follows in Section 2.3. Section 2.4 introduces brute force attacks

and their constraints. Finally, Section 2.5 introduces DFA attacks providing a comparison

of attack power and constraints.

2.1 Cryptology

Cryptology encompasses both the study of keeping secrets, cryptography, and

breaking them, cryptanalysis [27]. To secure information, an encryption algorithm

transforms the clear plaintext message into a ciphertext using a secret encryption key. To

reveal the secret message, a decryption algorithm transforms a ciphertext back into the

plaintext using a secret decryption key. Encrypting with different keys results in different

ciphertexts, and only the correct decryption key reveals the original plaintext. Figure 2.1

illustrates this black box view. By convention, the actors involved are Alice, who encrypts

plaintexts and sends ciphertexts, and Bob, who receives the ciphertext and decrypts back to

plaintexts. The attacker is Eve who has access to ciphertexts through various methods such

as listening to network traffic.

Figure 2.1: High-Level Encryption and Decryption.

4

2.1.1 Properties.

A ‘good’ cryptographic algorithm is one which is theoretically secure. That is, the

algorithm leaks no information. Given arbitrary ciphertexts, Eve knows nothing about

the associated plaintexts or keys. A few underlying principles and properties which are

necessary, but not sufficient for a secure cryptographic algorithm follow.

• Confusion. The ciphertext does not relate in a simple way to the key [27].

• Diffusion. Each bit of the plaintext affects many bits of the ciphertext. Similarly,

each bit of the ciphertext relies on many bits of the plaintext [27].

• Avalanche Criterion. Changing one bit of the plaintext or key should flip about half

of the ciphertext bits [12].

• Non-linearity. A simple linear function (addition and multiplication) on the input

cannot closely approximate the ciphertext.

• Apparent Complete Randomness. Produced ciphertexts statistically appear to be

completely random.

• Large Keyspace. The encryption key size is sufficiently large enough to make a

brute force attack infeasible (see Section 2.4).

• Kerchkoff’s Principle. Algorithms should not rely on security through obscurity.

Instead, Alice and Bob should always assume Eve knows the algorithm [27].

2.1.2 Attacks.

Cryptanalysis attacks conventionally divide into four categories based on the

information available. This section includes a fifth category, side channel, which acts as an

additional optional descriptor to supplement the first four. For the following explanatory

situations the encryption and decryption machines use secret keys which the operator

cannot access.

5

• Ciphertext Only. Eve only has access to ciphertexts, but no access to the encryption

or decryption machines. Access to ciphertexts is always assumed, otherwise there

would be no need for Alice to encrypt her messages to Bob.

• Known Plaintext. Eve has no access to the encryption or decryption machines, but

has knowledge of what certain plaintext(s) encrypt to. This encompasses ciphertext

only.

• Chosen Plaintext. Eve has access to the encryption machine. She can encrypt a

number of plaintexts to manufacture associated (plaintext, ciphertext) pairs. This

encompasses known plaintext and ciphertext only.

• Chosen Ciphertext. Eve has access to the decryption machine. She can decrypt a

number of ciphertexts to manufacture associated (ciphertext, plaintext) pairs. This

encompasses ciphertext only.

• Side Channel. Eve has access to information not directly tied to the algorithm, such

as timing, processor sounds, power usage or outside information.

2.1.3 Algorithms.

Two main encryption schemes exist: symmetric and asymmetric (also known as

private and public key). In an asymmetric (public key) algorithm, decryption is a function

which acts upon the ciphertext to restore it to the plaintext, but decryption is not the

inverse of encryption. Encryption is a computationally efficient function, but the inverse is

computationally inefficient, such as factoring a large number. As a result decryption is a

different function which relies on a different key to efficiently undo the work of encryption.

RSA is the most recent standard public key algorithm [2]. In a symmetric (private key)

algorithm, decryption is the inverse of encryption. That is, encryption is an easily invertible

function reliant on a key. The same key enables both decryption and encryption. Often

users and developers choose symmetric encryption schemes, rather than asymmetric, to

6

encrypt large volumes of data because of their increased speed. AES is the most recent

standard symmetric key algorithm [2], and is what this paper examines.

2.2 AES

AES is a worldwide standard symmetric key encryption algorithm defined in [1].

Being symmetric, the same secret key enables both encryption and decryption of a

particular message, and decryption is the inverse of encryption. Unprotected input

messages are plaintexts, P, while the secure outputs are ciphertexts, C, both of length 128

bits. Figure 2.2 displays pseudocode for AES, and Section 2.2.3 further details the process.

Figure 2.2: AES Pseudocode Based on [8].

7

The data of the algorithm at intermediate stages of encryption and decryption is the

state, S. To establish a standard throughout this paper, referencing of the state uses up to

three indexes: iS j
k. The round index is i, j is the operation index and k is the byte index:

roundSoperation
byte . A 4x4 matrix of bytes represents each particular state iS j with k ∈ {0, 1, ..., 15}

indexed as shown below in Figure 2.3. Alternatively, k ∈ {R0, R1, R2, R3} or k ∈ {C0,

C1, C2, C3} references a row or column of the state respectively, top to bottom and

left to right, rather than a particular byte. Key lengths are 128, 192, or 256 bits with

increased length corresponding to stronger theoretical cryptographic properties. These key

lengths identify implementations of AES: AES-128, AES-192, and AES-256. Reference

to the key is equivalently the secret key and the encryption key. The algorithm consists

of four repeated steps performed on the state: SubBytes, ShiftRows, MixColumns, and

AddRoundKey. Section 2.2.2 discusses each in detail.

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

Figure 2.3: Generic AES State Representation with Byte Indexing.

2.2.1 Galois Field 28.

AES uses the Galois Field GF(28), a number system, for mathematical manipulations

of bytes, treating them as polynomials. GF(28) provides unique properties for calculation of

all bit manipulations, hexadecimal notation simply improves portability and ease of storage.

Each bit in the byte b7b6b5b4b3b2b1b0, where bi is the ith bit, represents the coefficient of

8

the xi term of the polynomial

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x1 + b0x0.

For example,

0xA4 = 1010 0100 = 1x7 + 0x6 + 1x5 + 0x4 + 0x3 + 1x2 + 0x1 + 0x0 = x7 + x5 + x2.

The base 2 in GF(28) represents that coefficients are in modulus two. The following

example highlights addition.

0xA4 + 0x86 = 1010 0100 + 1000 0110

= (1x7 +0x6 +1x5 +0x4 +0x3 +1x2 +0x1 +0x0)+(1x7 +0x6 +0x5 +0x4 +0x3 +1x2 +1x1 +0x0)

= (x7 + x5 + x2) + (x7 + x2 + x)

= 2x7 + x5 + 2x2 + x

= x5 + x = 0010 0010 = 0x22

Thus, addition is simply the bitwise XOR operation, that is,

1010 0100

⊕ 1000 0110

0010 0010 = 0x22.

This observation has several implications. It affirms the intuition that 0 is the additive

identity I, since for any byte β, β+ 0 = β = β+I. Also, the XOR of any number with itself

is 0, so for any byte β, β + β = 0. From this property an inverse of addition exists and is, in

fact, itself. For any byte α:

(β + α) + α = β + (α + α) = β + 0 = β

9

This fact enables further manipulation of equations. In the real numbers, performing

the inverse of ‘+5’ to both sides of the equation, x + 5 = 9, solves for x, resulting in

x + 5 − 5 = 9 − 5 ⇒ x = 4. Similar manipulations are possible in GF(28). Supposing β is

some unknown byte with the relation, β + 0x14 = 0x96, it is now possible to solve for β,

β + 0x14 + 0x14 = 0x96 + 0x14⇒ β = 0x82.

Additionally, it is impossible to add together any two numbers within GF(28) and

end up with a number outside of GF(28). Because of this, GF(28) is said to be closed

under addition. Further, addition in GF(28) is commutative, α + β = β + α, and

associative, α + (β + γ) = (α + β) + γ. These are important and non-trivial properties.

For perspective, subtraction is not commutative, 5 − 4 = 1 , −1 = 4 − 5, or

associative, 5 − (4 − 1) = 5 − (3) = 2 , 0 = (1) − 1 = (5 − 4) − 1, over the Integers,

and division is not closed over the Integers, 2 ÷ 3 = 2/3 < Z.

The exponent of 8 represents that eight powers of x, zero through seven, make up

elements of GF(28). If multiplication achieves a power of x greater than or equal to eight,

a reduction occurs using the irreducible polynomial for GF(28), x8 + x4 + x3 + x + 1. This

polynomial enables construction of GF(28), specifically the relation x8 + x4 + x3 + x+1 = 0.

So, the equivalence relation for reducing polynomials to powers less than 8 is x8 =

x4 + x3 + x + 1. Using this relation the following example illustrates multiplication.

0xA4 · 0x02 = 1010 0100 · 0000 0010

= (1x7 +0x6 +1x5 +0x4 +0x3 +1x2 +0x1 +0x0) ·(0x7 +0x6 +0x5 +0x4 +0x3 +0x2 +1x1 +0x0)

= (x7 + x5 + x2) · x

= x8 + x6 + x3

= (x4 + x3 + x + 1) + x6 + x3

= x6 + x4 + 2x3 + x + 1

10

= x6 + x4 + x + 1 = 0101 0011 = 0x53.

Because of the relation x8 = x4 + x3 + x + 1, GF(28) is also closed under multiplication.

Multiplying the reduction by an appropriate power of x reduces powers greater than 8. For

example, x11 = x3 · x8 = x3(x4 + x3 + x + 1) = x7 + x6 + x4 + x3. This also illustrates

that multiplication distributes over addition. The multiplicative identity, like in the Real

Numbers, is 1. Lastly, every element aside from 0 has a multiplicative inverse (i.e., for

every β , 0 there exists an α such that β · α = 1).

2.2.2 State Operations.

• SubBytes (SB). [Substitution] The S-box performs bytes substitutions. This

transforms one byte at a time, altering every byte in the state matrix. The S-box

is an 8-bit 16x16 table built from an affine transformation on multiplicative inverses

which guarantees full permutation (S-box(a) , a) and provides non-linearity [1, 25].

A table logically represents this substitution function such that the incoming higher

order nibble identifies the row, while the lower nibble identifies the column. The

corresponding table entry then replaces the incoming byte. This substitution function

is fixed and well known. Figure 2.4 is a representation of the S-box. An example

lookup is S-box(0x12) = 0xC9.

Figure 2.4: AES S-box.

11

• ShiftRows (SR). [Rotation] This step cyclically shifts the bytes in each row providing

inter-column diffusion. Iterating over every row, the ith row rotates i bytes to the left,

visually diagonalizing the columns for i ∈ {0, 1, 2, 3}. Figure 2.5 below illustrates the

generic application of SR to the state.

Figure 2.5: AES Shift Row operation.

• MixColumns (MC). [Linear Combination] An invertible linear transformation

provides intra-column diffusion. A fixed and well-known matrix M multiplies with

each column of the state, S Ci for i ∈ {0, 1, 2, 3}. Figure 2.6 shows the multiplication

of this fixed matrix with the first column of the state, M × S C0. Multiplication and

addition are as defined in GF(28).

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

×

S0

S4

S8

S12

=

2S0 + 3S4 + S8 + S12

S0 + 2S4 + 3S8 + S12

S0 + S4 + 2S8 + 3S12

3S0 + S4 + S8 + 2S12

Figure 2.6: Mix Column Example.

12

• AddRoundKey (AK). [Addition / Exclusive Or] This step integrates the round key

with each state byte adding them together in the field (i.e., using the XOR function).

Figure 2.7 illustrates the AK operation.

Figure 2.7: Generic Add Key Step.

2.2.3 Encryption.

Depending on the AES implementation (128, 192 or 256 bit key), the algorithm

iterates over the state operations 10, 12 or 14 times creating rounds with an additional

round zero application of AK, and the last round (10, 12 or 14) omitting MC. Figure

2.8 shows AES-128 encryption as a logical application of operations that form the rounds.

Figure 2.9 depicts the AES-128 encryption algorithm left to right, top to bottom, and shows

proper round and operation state indexing. The algorithm stores the plaintext into the state

by column rather than by row, and similarly outputs ciphertext by column rather than by

row.

13

Figure 2.8: Logical AES-128 Encryption.

2.2.4 Decryption.

Decryption is simply the inverse of each step performed in the opposite order, using

the round keys in reverse order. The inverse algorithm steps are InverseSubBytes (SB−1),

InverseShiftRows (SR−1), InverseMixColumns (MC−1) and AddRoundKey (AK). Figure

2.10 shows the logical flow of decryption, bottom to top.

• SB−1. The inverse S-box reverses the lookup process.

• SR−1. The ith row rotates i bytes to the right, i ∈ [0, 3].

• MC−1. Matrix multiplication with the inverse of the constant matrix used in MC.

• AK. XOR is its own inverse, thus AK−1 = AK, and AK is sufficient.

14

Figure 2.9: AES-128 Encryption.

15

Figure 2.10: Logical AES-128 Decryption.

2.2.5 Key Expansion Algorithm.

Another important aspect of AES is the generation of round keys through expansion of

the encryption key. AES-128 expands the 4x4 representation into a 4x44, or 11 4x4 round

keys. Similarly, AES-192 expands 4x6 to 4x52, and AES-256 from 4x8 to 4x60. This

expansion algorithm is the key schedule. Below are the relevant aspects of the process

for AES-128; AES-192 and AES-256 are logically similar. The following list defines

necessary operations and terminology.

• RotateWord (RW). Similar to the ShiftRow operation, a four byte word rotates one

byte to the left, such that the first byte becomes the last byte (e.g., RW(01 AB DC

EF) = AB DC EF 01).

• SubWord (SW). Similar to the SubByte operation, the S-box substitutes each byte of

a four byte word.

16

• RoundConstant (rcon). Represents the exponentiation of 2 within GF(28), rcon(i)

= xi−1. Rounds 1-10 use an rcon value. Table 2.1 shows the computation of each of

these values.

rcon(1) = x0 = 1 = 0000 0001

rcon(2) = x1 = x = 0000 0010

rcon(3) = x2 = x2 = 0000 0100

rcon(4) = x3 = x3 = 0000 1000

rcon(5) = x4 = x4 = 0001 0000

rcon(6) = x5 = x5 = 0010 0000

rcon(7) = x6 = x6 = 0100 0000

rcon(8) = x7 = x7 = 1000 0000

rcon(9) = x8 = x4 + x3 + x + 1 = 0001 1011

rcon(10) = x9 = x5 + x4 + x2 + x = 0011 0110

Table 2.1: Calculation of Rcon Values 1-10.

By convention, W is the expanded round key matrix with W[i][j] denoting the ith

column [0-43], jth byte [0-3]. As with storing the plaintext in 0S0, the first four columns

of W are the encryption key, filled by column. These first four columns are the round 0

key, with each subsequent set of four columns being the next round key. For columns 4-43:

W[i] = W[i − 4] ⊕ β. If i is not divisible by 4 (i.e., if the current column is not the first

column of a round key), then beta equals W[i − 1]. However, if i mod 4 = 0 (i.e., the

current column is the first column of round r’s key), then beta equals SW(RW(W[i− 1])) ⊕

[rcon(r), 0, 0, 0]. From this, round i key iK = [W(4i) −W(4i + 3)]. Figure 2.11 depicts the

AES-128 key schedule.

17

Figure 2.11: AES-128 Key Schedule.

18

Knowing the last round key, 10K, enables reversal of the 128 bit key schedule since

RW, SW, and rcon are all fixed and well known. Figure 2.12 illustrates this process. Normal

use encryption and decryption never reverse the key schedule, instead always building up

the expanded key from the encryption key. However, many attacks leverage this property;

recovery of K10 reveals the encryption key.

2.3 Dynamic S-box

The S-box specifically is a common focus of research because it is the only operation

adding non-linearity. Several dynamic S-box AES approaches exist including: S-box

rotation [15, 22], chaotic S-box generation [10, 21, 30–32], switch S-boxes [5] and using

different irreducible polynomials in GF(28) for S-box construction [6]. A brief explanation

of each follows.

2.3.1 Rotational S-box.

This research variant of AES uses an altered key schedule to create two expanded

keys: one for encryption, and one for rotation. The Rotational S-box variant also introduces

a new algorithmic step, S-boxRotation, performed at the start of each round except round

zero. Each round uses one of these 256 S-boxes. This new algorithm reportedly matches

or slightly exceeds the performance of standard AES for diffusion through avalanche effect

measures and Strict Avalanche Criterion [15, 22].

• S-boxRotation (SBR). Based on a manipulation of the round rotation key, the S-box

rotates a specified amount (round rotation value) to the left. This rotation is a cyclic

byte rotation, wrapping around from the top left to the bottom right of the S-box.

19

Figure 2.12: Reversal of the AES-128 Key Schedule.

20

2.3.2 Chaotic S-box.

This research variant of AES computes an S-box for each encryption key by applying

a chaotic function on the encryption key. So, in AES-128, up to 2128 unique possible S-

boxes exist, but each encryption only relies on one. Chaotic schemes are a popular choice

for cryptographic applications due to their sensitivity to initial conditions, non-linearity,

appearance of randomness, and determinism [10, 21, 30–32]. Existing methods include use

of logistic map [10, 32], coupled map lattice of spatiotemporal chaos [21] and a piecewise

linear chaotic map [30, 31].

2.3.3 Reduction S-box.

This research variant of AES allows choice of the S-box used by making the

irreducible polynomial over GF(28), conventionally x8 = x4 + x3 + x + 1, which the S-

box construction uses by way of multiplicative inverses, an encryption parameter. Sending

this polynomial with the key enables decryption [6]. Since 30 irreducible polynomials exist

in GF(28), 30 possible S-boxes exist. No other logical changes apply to the algorithm.

2.3.4 Switch S-box.

This research variant of AES uses a pseudo-random number generator to determine if

encryption uses the S-box or inverse S-box. Decryption then uses the other. Alice appends

0 or 1 to the ciphertext to signify which S-box decryption requires. So, each encryption

uses one of two S-boxes [5].

2.4 Brute Force Attacks

Two types of brute force attacks exist, online and offline. In both types, Eve throws

resources at the problem to test all possibilities until revealing the secret. Online brute

force attacks do not require Eve to have any knowledge of a system. Instead, she attempts

to use a password protected service, such as online banking or hard drive decryption, with

every possible key (and potentially username). Because online brute force attacks rely on

authenticating with a service, these attacks cannot leaverage precomputation and instead

21

occur in real time. Offline brute force attacks are a realization of a known plaintext,

chosen plaintext or chosen ciphertext attacks. For example, if Eve knows E(P) = C, she

can encrypt P with every possible K until a match of C is found. Offline brute force

attacks can leverage precomputation and vary in complexity and approach ranging from

exhaustive search and table lookup, to combinatory Time/Memory Tradeoff attacks such as

Rainbow Tables. Brute force attacks succeed when computation time, block size, or key

size are sufficiently small. Attacks on AES, and all cryptographically secure solutions, are

infeasible by definition due to computation time and storage costs [27]. AES allows for an

increase in both with its AES-192 and AES-256 implementations.

2.4.1 Time/Memory Trade-off.

If Eve has a known plaintext, one which remains constant and often used by Alice,

such as a header “Dear Bob,”, the time intensive extreme of this spectrum dictates Eve

encrypting the plaintext with every possible key, and each time checking for a match against

the ciphertext. This method is good for singular attacks, but quickly repeats a great deal

of work if Alice changes the key. The memory intensive extreme of this spectrum has

Eve encrypting this known plaintext with every possible key, and creating a dictionary of

(ciphertext, key) entries. Now each time the key changes, Eve only needs to perform a

lookup to obtain the new key. Compromises between these two extremes are often the

best option, so as to reduce repeated work, while maintaining a reasonable storage burden.

Similar trade-offs are commonplace within cryptanalysis, with the best option dictated by

the attacker’s available resources and goals.

2.4.2 Brute Force Mitigation Techniques.

As previously stated, the three algorithmic factors which affect the feasibility of a brute

force attack are computation time, block size, and key size. The following list explores each

in more detail.

22

• Computation Time. Often simply encryption time, this is the time required to

try one possible key. Longer and more complex algorithms and artificial delays

increase this burden. Artificial delays are practical against online brute force attacks

where Eve must interface with a front end authentication rather than the encryption

algorithm directly. Small increases significantly burden the attacker while remaining

unnoticeable to users. Considering a hypothetical encryption system which encrypts

in one nanosecond and a target algorithm that has 250 keys, key recovery requires a

maximum of:

250 keys ×
1 sec

109 keys
×

1 day
86400 sec

≈ 13 days.

However, artificially suppressing the encryption time to 0.001 seconds, still

apparently instantaneous to an end user, jumps this to:

250 keys ×
1 sec

103 keys
×

1 day
86400 sec

×
1 year

365.25 days
≈ 35, 678 years.

• Block Size. This is the amount of data encrypted at once. If Eve wants to store all

the encryptions of a particular byte plaintext for an algorithm with 240 keys (6 byte

key + 1 byte ciphertext = 7 bytes per iteration), it requires:

7 bytes
1 iteration

×
1 terabyte

10004 bytes
× 240 iterations ≈ 7.7 terabytes.

This although quite large is not wholly unreasonable. If the block size increases from

1 byte to 16 bytes, this changes to (6 byte key + 16 byte ciphertext = 22 bytes per

iteration) requiring:

22 bytes
1 iteration

×
1 terabyte

10004 bytes
× 240 iterations ≈ 24.2 terabytes.

Again actual storage space is feasible provided a specialized computing environment

or a specific investment in storage, however efficiently managing and accessing this

data becomes increasingly complex, especially if Eve targets several plaintexts.

23

• Key Size. This affects both storage and time constraints directly, however most

restrictive to time. Assuming a hypothetical encryption system which encrypts in

1 × 10−15 seconds and a target algorithm that has 280 keys, recovery requires a

maximum of:

280 keys ×
1 sec

1015 keys
×

1 day
86400 sec

×
1 year

365.25 days
≈ 38 years.

Although a substantial amount of time and computing power, conceivably secrets

exist worth the investment. Increasing the keyspace to the equivalent of AES, this

becomes impossible:

2128 keys ×
1 sec

1015 keys
×

1 day
86400 sec

×
1 year

365.25 days
≈ 1.08 × 1016 years.

2.5 Differential Fault Analysis

DFA is a category of side channel attacks, which leverage physical implementations

rather than theoretical weaknesses in the cryptographic algorithm. DFA relies on inducing

faults through controllable external factors such as voltage fluctuations, clock cycle speed

or a laser. These physical effects cause the current operation to resolve incorrectly, and just

inject one or more random byte faults. The algorithm continues execution to completion,

propagating the fault and creating a faulty ciphertext. This faulty ciphertext and its

corresponding correct ciphertext, in conjunction with knowledge of timing and placement

of the original fault allow for the construction of Differential Fault Equations (DFE).

Solving these equations reduces the possible encryption key space, fully revealing the key

or making brute force attacks feasible. Central to the success of these equations is the

SubBytes operation.

DFA divide into four main categories: DFA on the State [4, 13, 16, 19, 26], DFA on

the Key Schedule [7, 17], Round Modification Analysis [4, 9], and DFA on the Algorithm

[4, 7, 24]. Location of fault induction and the assumptions made about the faults

differentiate these attacks. The actual implementation and realization of these faults is

24

another area of research entirely outside the scope of this paper. However, [9, 14, 18, 24]

demonstrate arbitrary assumptions about fault placement and timing are reasonable.

2.5.1 DFA on the State.

Fault injection logically produces a fault in the state just before the MixColumns

operation of round r, a near terminal round. Actual injection of the fault can occur during

any operation between MixColumns of rounds r − 1 and r. Without loss of generality the

fault is random and corrupts byte 0, S0. MixColumns and ShiftRows propagate this fault,

building up relations within the columns of the XOR of the correct and faulty ciphertext.

Figure 2.13 shows fault propagation in AES-128 with the fault injected at 7S2
0. Current

versions of this attack fully recover the key with 2 faulty ciphertexts for AES-128, 2 for

AES-192, and 3 for AES-256, and allow fault injection up to the third to last round while

maintaining a reasonable level of complexity [16].

Figure 2.13: DFA on the State Fault Propagation in AES-128 [16].

25

2.5.2 DFA on the Key Schedule.

Fault injection occurs on the rth round key. The fault then propagates throughout the

state and the following round keys. Without loss of generality the fault is random and

corrupts the first byte of the rth key. More complex relations than those from DFA on

the State build up from the XOR of the correct and faulty ciphertext. Figure 2.14 shows

specifically how the fault spreads through the key schedule while Figure 2.15 shows fault

propagation through the state and key. Current versions of this attack fully recover the key

with 2 faulty ciphertexts for AES-128, 4 or 6 for AES-192, and 4 for AES-256, and allow

fault injection up to the third to last round [17].

Figure 2.14: DFA on the Key Schedule Fault Propagation in AES-128 [17].

26

Figure 2.15: DFA on the Key Schedule Fault Propagation in AES-128 [17].

2.5.3 Round Modification Analysis.

Round Modification Analysis (RMA) is a generalization of Round Reduction Analysis

(RRA), which induces a fault, changing the number of AES rounds executed. RRA reduces

the number of rounds, typically to one or two, weakening the encryption significantly.

RMA however allows for the possibility of increasing the rounds of AES, resulting in

27

faulty ciphertexts. Like other forms of fault analysis, these ciphertexts reduce the key

range possibilities, making brute force attacks feasible [4, 9].

2.5.4 DFA on the Algorithm.

Although not explicitly defined in prior work, [4, 7, 24] exploit a fault induced into

an algorithmic component such as the S-box or rcon. These attacks allow unique control

and in some cases even enable known plaintext attacks. These often require explicit control

over fault values.

2.5.5 DFA Mitigation Techniques.

Because DFA relies on inducing faults, error checking schemes mitigate this threat.

Examples include recalculating the last several rounds of an encryption checking for a

match, and timing analysis checking operations run their expected time [11, 16, 20, 23,

29]. Because these are an extra burden, minimum safeguards protect the most easily

exploitable last rounds. Thus, research pushes successful DFA towards more complex and

computationally expensive fault injections in earlier rounds, and more control over fault

injection location and value.

2.6 Background Summary

AES is the current symmetric key cryptographic standard. As such, improving and

attacking AES are continuous areas of research. One potential area of improvement uses

a Dynamic S-box rather than the current fixed S-box. This potentially reduces the amount

of viable precomputation possible in brute force attacks, adds additional complexity to the

algorithm and increases encryption time. One current attack vector on AES is DFA. These

attacks use correctly and incorrectly encrypted ciphertexts to build up relations that allow

key recovery.

28

III. Theoretical Attack Analysis

This chapter discusses research design decisions and explains the attack extension.

Section 3.1 defines the problem and outlines the approach. Section 3.2.1 discusses trade-

offs and complexities of variant AES implementations, then explicitly defines the target

variant in Section 3.2.2. A discussion of necessary assumptions and extensibility of DFA

attacks follows in Section 3.2.3. Section 3.2.4 explains the existing theoretical analysis of

the attack source. Finally, Section 3.3 provides theoretical attack extension analysis.

3.1 Problem Definition

3.1.1 Goals and Hypothesis.

The goal of this research is to determine the complexity of extending DFA to

existing dynamic S-box AES designs. This research expects DFA attacks become more

complex and difficult on a dynamic S-box AES design based on the additional complexity

introduced. This research expands the overall security analysis of a dynamic S-box AES to

assess its practicality and usefulness compared to the standard AES.

3.1.2 Approach.

This research employs probabilistic analysis to determine the keyspace reduction

power of non-trivial DFA attack extensions to dynamic S-box AES research variants.

Specifically choosing attack targets and sources guides analysis towards interesting and

non-trivial extensions. These extensions use the concepts of existing work, while providing

novel approaches where necessary.

29

3.2 Attack Targets and Sources

3.2.1 Potential Attack Targets.

As outlined in Section 2.3 the four possible Dynamic S-box designs are Rotational,

Chaotic, Reduction, and Switch. 128 bit key length implementations are the base case, and,

thus, the first step in extension. A high-level cursory consequences discussion follows.

• Rotational. Although this variant adds an additional operation, the AES encryption

algorithm retains much of its structure. The S-box, though dynamic, relies on the

existing AES S-box, with 256 total permutations each round, for 10 rounds, a total

of 280 possibilities from a simple operation on the existing structures. The S-box

rotation appears to add a great deal of complexity with little additional effort or

change to the algorithm.

• Chaotic. No change to the logical flow of the AES algorithm means current systems

would only need to update the key schedule and S-box. However, building and

storing the S-box for each encryption would likely limit the amount of optimization

encryption hardware could perform. The potential increase of complexity is 256! ≈

8.5 × 10506 for every possible S-box. Each key creates exactly one S-box, limiting

this to 2128. However, construction potentially creates any S-box, including the

cryptographically broken. For example, the possibility exists that a key creates the

identity S-box.

• Reduction. Within finite Galois fields, there exist only a certain number of

irreducible polynomials. Only 30 exist for a Galois Field of size 28. This only

introduces a complexity of about 25, which is a trivial work factor.

• Switch. Two S-box possibilities, both already employed, make this variation similar

to AES when examined by necessary components. Updating to this S-box scheme

would require the least work and would allow the most optimization. However,

30

this variation also provides the least increased complexity of 2. This increased

complexity is only for offline attacks though, because by sending 0 or 1 in the clear,

Eve knows which S-box to use, so there is no increase in complexity.

From this exploration, extending to the chaotic design would require significant computing

power and analysis of chaotic properties, because no changes occur to the logical flow

of the algorithm, but a huge pool of 2128 possible S-boxes exist. Reduction would be a

trivial extension by repeating the attack 30 times or require no extra work if the irreducible

polynomial identifier was sent ‘in the clear’ with the key, and switch would be no more

complex, but simply require implementation. The rotational limit of 256 S-box options

makes the work factor reasonable while the possibility of any one of these S-boxes used

each round makes for interesting complexity. Thus rotational which does not alter the

nature of the algorithm and adds complexity, while maintaining a feasible work factor is

the most interesting and reasonable option to attack.

3.2.2 Attack Target Implementation.

As discussed in Section 2.3.1, Rotational S-box AES variants add an additional round

operation, SboxRotation. Repeatedly applying this operation to the same S-box, rather than

to the standard AES S-box each time, makes this iterative. Logically in programming, SBR

is a function acting on an S-box passed by reference; rotating the S-box a specified amount.

Additionally, this variant creates two expanded keys. AK uses the expanded encryption key,

while SBR uses the expanded rotation key. Figure 3.1 illustrates the encryption process as

rounds of operations. A slightly different key schedule creates these two expanded keys.

Two key schedule schemes exist.

• Key Schedule 1. The S-box rotates by the XOR of all the bytes of the encryption

key. Performing the key schedule as in normal AES, but using this rotated S-box for

SubWords, creates an expanded key which is both the expanded encryption key, K,

and the expanded rotation key, RK.

31

• Key Schedule 2. Key Schedule 1 creates an expanded rotation key, RK. The once

rotated S-box used in Key Schedule 1 rotates a second time by the XOR of all the

bytes of the expanded rotation key. Performing the key schedule as in normal AES,

but using this twice rotated S-box for SubWords, creates the expanded encryption

key, K.

Figure 3.1: Logical RAES-128 Encryption.

Two reduction schemes exist to create rotation values from the round rotation key. This

round rotation value designates by how much the S-box rotates in the associated round of

encryption. SBR performs this rotation.

• Rotation Reduction 1. The round rotation value is the last byte, iRK15 in the round

rotation key.

32

• Rotation Reduction 2. The round rotation value is the XOR of all the bytes in the

round rotation key.

Combinations of these Key Schedules and Rotation Reductions result in four

proposed Rotational S-box AES (RAES) implementations labeled Types 1 through 4.

Higher numbers relate to increased theoretical security due to complexity, confusion and

computation time. Choice of key schedule is the primary security influence.

• RAES Type 1. Key Schedule 1 and Rotation Reduction 1

• RAES Type 2. Key Schedule 1 and Rotation Reduction 2

• RAES Type 3. Key Schedule 2 and Rotation Reduction 1

• RAES Type 4. Key Schedule 2 and Rotation Reduction 2

Decryption requires one extra step of priming the inverse S-box. The S-box used in

round 10 of encryption is the standard AES S-box rotated 11 or 12 times depending on the

Key Schedule used. Rotating the inverse S-box by these same values correctly orients it

for decryption. Once correctly initialized, decryption follows as expected with SBR−1 a

rotation of inverse S-box to the right by the round rotation value. Figure 3.2 illustrates this

process.

Explicitly establishing the mechanisms of these implementations required several

design decisions beyond the scope of [15, 22]. Appendix A justifies these decisions and

discusses the alternatives. Appendix B provides sample encryptions and key schedules of

all 4 Types to facilitate validation and future use of this algorithm.

33

Figure 3.2: Logical RAES-128 Decryption.

3.2.3 Potential Attack Sources.

As outlined in Section 2.5 the four possible DFA attacks are: DFA on the State, DFA

on the Key Schedule, Round Modification Analysis, and DFA on the Algorithm. Using a

rotational S-box affects each uniquely. A high-level consequences discussion follows.

• DFA on the State. This requires no assumptions about the value of the fault injected.

Faults only propagate through the state. Rotating the S-box does not affect the

location of the propagation, only the values. Most likely, this extension could largely

use existing work.

• DFA on the Key Schedule. This requires no assumptions about the value of the

fault injected. Depending on RAES Type and the key expansion targeted, potentially

only the values change, not location of faults. The altered key schedule increases the

34

complexity and analysis required for this attack, though most likely this extension

could largely use existing work.

• Round Modification Analysis. This requires a controllable or predictable fault

injection value. Leveraging a fault injection is the only DFA element of RMA. Use

of a Rotational S-box does not significantly impact methods used in key recovery

when altering the number of rounds. These methods are a set of more conventional

cryptanalysis approaches.

• DFA on the Algorithm. The most abstract DFA category which allows many

possibilities. Many creative options allow powerful attacks, but these attacks likely

need the most control of values injected. DFA on the Algorithm is an open-ended

class with no clear implementations to imitate.

From this analysis, DFA on the State and DFA on the Key Schedule are the most

logical and interesting choices in identifying a non-trivial extension of an existing attack.

This research pursues DFA on the State for the slightly less expected complexity. Extending

to DFA on the State likely allows use of existing attack properties and analysis, while still

requiring creative workarounds to the added complexity.

3.2.4 Attack Source Implementation.

Extending DFA on the State to RAES requires understanding of the existing attack.

The theoretical analysis detailed in [28] examines probabilities that certian conditions hold

to determine the attack’s keyspace reduction power. What follows is a synopsis of this

analysis.

Eve obtains a correct encryption E of plaintext P, using key, K. She then leverages

attack capabilities to inject a fault at 8S2
0, obtaining a faulty encryption Ē of plaintext P,

using key K. The single byte fault propagates to corrupt the entire ciphertext. S̄ and C̄

represent the faulty state and ciphertext. Figure 3.3 represents the XOR of the last three

35

rounds of E and Ē. ∆S and ∆C represent the state and ciphertext respectively. Assigning

the difference between E and Ē at the fault injection site 8∆S2
0 to the variable ‘a’, relations

build up around this XOR difference. A walkthrough of fault propagation through each

operation follows.

Figure 3.3: XOR of Correct and Faulty AES-128 Encryption, Rounds 8-10.

• MC. Figure 3.4 highlights the transition between 8∆S2 and 8∆S3. Figure 3.5 shows

the underlying math. Because multiplication distributes over addition in GF(28),

MC(8S2) ⊕ MC(8S̄2) = MC(8S2 ⊕ 8S̄2) = MC(8∆S2).

36

Figure 3.4: XOR of Correct and Faulty AES-128 MC Operation.

Figure 3.5: XOR MC Walkthrough.

• AK. Figure 3.6 highlights the transition between 8∆S3 and 8∆S4. Because the fault

injection does not corrupt the key schedule, the expanded key is the same for both

E and Ē. Thus, as shown in Figure 3.6, every byte of 8∆K is 0. Because XOR, or

addition in GF(28) is commutative, the order of performing this XOR does not matter,

and so 8∆S4 = AK(8∆S3) = 8∆S3 ⊕ 8∆K = 8∆S3. The equations below demonstrates

this relationship.

8∆S4
0 = (8S3

0 ⊕
8K0) ⊕ (8S̄3

0 ⊕
8K0)

= (8S3
0 ⊕

8S̄3
0) ⊕ (8K0 ⊕

8K0)

= (8S3
0 ⊕

8S̄3
0) ⊕ (0)

= 8∆S3
0

37

Figure 3.6: XOR of Correct and Faulty AES-128 AK Operation.

• SB. 9∆S1 = SB(9S0) ⊕ SB(8S̄0). Distributing SB over XOR is not possible.

SB(00) ⊕ SB(01) = 63 ⊕ 7C = 1F

SB(00 ⊕ 01) = SB(01) = 7C , 1F

SB(02) ⊕ SB(03) = 77 ⊕ 7B = 0C , 1F

This prohibits further reductions, thus relations from 9∆S0 cannot move forward into

9∆S1. Figure 3.7 highlights this.

Figure 3.7: XOR of Correct and Faulty AES-128 SB Operation.

• SR. No manipulation of byte values occur in this step, thus the XOR values remain

unchanged, but move byte position as dictated by the SR operation. Figure 3.8 shows

this.

38

Figure 3.8: XOR of Correct and Faulty AES-128 SR Operation.

Clearly defined fault propagation allows discussion of the analysis to move forward.

As the attacker, Eve only has C and C̄, and thus ∆C. Knowing AK has no effect on ∆S

values, 10∆S2 = ∆C. Again, SR does not affect ∆S values, and so 10∆S1 = SR−1(∆C). Thus

with C and C̄, Eve also knows 10∆S1. This attack exploits the known relations that exist in

10∆S0, and the possible 10K that enable 10∆S1 to step back and satisfy these relations. The

set of DFE to represent this for 10∆S0
C0 follow.

2b = SB−1(C 0 ⊕
10K 0) ⊕ SB−1(C̄ 0 ⊕

10K 0) (3.1)

b = SB−1(C 7 ⊕
10K 7) ⊕ SB−1(C̄ 7 ⊕

10K 7)

b = SB−1(C10 ⊕
10K10) ⊕ SB−1(C̄10 ⊕

10K10)

3b = SB−1(C13 ⊕
10K13) ⊕ SB−1(C̄13 ⊕

10K13)

Since b can be any value a byte can hold, except 0, b is in {1, 2, ..., 255}. Were b zero,

fault injection failed, and thus C = C̄, so there is nothing to exploit. Examining the first

equation of the set, regardless of what values C0 and C̄0 hold, of the 255 possible values of

2b, 128 yield 0 10K0 key hypothesis which satisfy Equation 3.1, 126 yield 2 and 1 yields 4.

Iterating over all possible values of C0, C̄0 and 10K0 reveal this. Thus, on average for any

one particular value of 2b, there exists (2 × 126 + 4)/255 = 256/255 just over 1 valid 10K0

hypothesis. Considering all 255 possible values of 2b yields an expected 255 × 256
255 = 256

10K0 hypotheses. This result is not a reduction yet since 10K0 is one byte which can hold

one of 28 = 256 values. The same holds for each of the four equations in the set.

39

Now considering all four equations at once, for a given value of b, each equation on

average should return about one 10Ki value. These four values form a quartet of key bytes

{10K0,
10K7,

10K10,
10K13} which is one hypothesis. Considering all 255 b values should

create 256 of these quartets. This column analysis reduces the keyspace of these four bytes

from (28)4 to 28.

A set of equations like those seen above exist for each of the four columns of 10∆S0,

thus each of these reduce similarly. Each column is independent, making no further

relations possible from these relationships in round 10. So, the original keyspace of

2128 = ((28)4)4 reduces to (28)4 = 232 when considering all combinations of these quartets.

Equivalently, these sets of equations have a keyspace reduction power of 2−96.

This analysis and process is the essence of the DFA attack. Reductions based on

properties that must hold over the SB operation on the XOR of a correct and faulty

ciphertext. Stepping back to round 9 produces a similar reduction, and building relations

over 9S 0
C0 further reduces the keyspace to 28. However, leveraging round 9 information

requires a much greater amount of work for a much smaller reduction. Fully reducing the

10K keyspace to 1 requires additional C, C̄ pairs. This produces two independently reduced

10K keyspaces of 232. The intersection of these keyspaces yields one unified reduced

keyspace. Keys should randomly appear in both with likelihood 232 × 232

2128 = 2−64. Thus

only the valid 10K should remain. Once recovered, as discussed in Section 2.2.5 reversal

of the key schedule reveals the original encryption key. The round 10 reduction has a work

factor of (28) × 16 = 212 since stepping each 10Ki byte back occurs individually and has

a keyspace reduction power of 2−96. However the round 9 reduction has a work factor

of 232 since stepping back through to 9S 0
C0 requires calculating 9K which relies on 10K.

Individually checking all 232 possible keys has a reduction power of 2−24. If Eve can only

obtain one C, C̄ pair and she knew the format of the unencrypted data, she could reasonably

40

perform this round 9 reduction and decrypt C with each of the 256 possible keys to see if

any of the resulting plaintexts conform to the expected data format.

3.3 Attack Analysis

A rough estimate of the memory necessary to calculate the S-box relations used in the

attack described in Section 3.2.2 is (possible Ci)×(possible C̄i)×(possible 10Ki)×(storage

cost). Each calculation needs to store 4 bytes, Ci, C̄i, 10Ki, and b. Thus roughly

256 × 256 × 256 × 4 = 226 bytes, or roughly 0.067 GB. When pushing this analysis to

the Rotational S-box, storage costs roughly become (possible round 10 S-box rotation

values)×(possible Ci)×(possible C̄i)×(possible 10Ki)×(storage cost). Each calculation

needs to store 5 bytes, r10, Ci, C̄i,
10Ki and b. Thus roughly 256×256×256×256×5 ≈ 234.32

bytes, or approximately 21.5 GB. While this may not be a burden for supercomputers or

specialized workstations, it is beyond the processing power of most personal workstations.

As such, extension requires a different analysis approach. The existing fault propagation

model holds, but reduction requires knowing the S-box used in round 10.

3.3.1 Rotation Step Analysis.

Examining the SBR operation, Figure 3.9 shows the standard, unrotated S-box, S-

box0. Looking up 0x02: S-box0(0x02) = 0x77. Rotating S-box0 by one results in S-box1,

SBR(1, S-box0) = S-box1, Figure 3.10 displays this new rotated S-box. Again looking

up 0x02: S-box1(0x02) = 0x7b. Looking up 0x03 in S-box0 achieves this same result.

Rotating S-box1 by one results in S-box2, SBR(1, S-box1) = S-box2. Figure 3.11 visualizes

this twice rotated S-box. Looking up 0x02 again: S-box2(0x02) = 0xf2.

41

Figure 3.9: RAES S-box0.

Figure 3.10: RAES S-box1.

Figure 3.11: RAES S-box2.

42

Again, looking up 0x04 S-box0 produces the same output. Just one rotation of S-box0

by 2, SBR(2, S-box0) also computes S-box2. In fact, any number of rotations reduce to just

one rotation of S-box0:

SBR(rn, SBR(· · · , SBR(r1, SBR(r0, S−box0)) · · ·)) = SBR((r0+r1+· · ·+rn)%256, S−box0).

Addition here is over the integers, not GF(28) and although the mod256 is not necessary,

it is still correct. Rotating S-box0 by 256 rotates the S-box all the way around back to its

starting position. Considering rotation an adjustment of lookup indicies further simplifies

the S-box rotation. This research denotes addition over the integers mod256 with �. As

previously noted, looking up 0x02 in S-box1 is also 0x03 in S-box0. Adjusting the lookup

index of 0x02 by an increase of 1 has the same effect of rotation. This adjustment is exactly

0x02 � 0x01 since the lookup indicies are the incoming byte nibbles. Again, looking up

0x02 in S-box2 is also 0x04 in S-box0. Adjusting the lookup index by an increase of 2

produces this same effect. This adjustment is exactly 0x02 � 0x02. In fact, this property

holds for all possible rotation values. Similarly, this manipulation holds over the inverse

SBR−1 as well.

The Rotational S-box implementations use iterative S-box rotations. ir represents the

rotation value for a particular round as calculated from the expanded rotation key. The

key schedule rotates by −1r and if necessary (Type 3 and Type 4) −2r. Then round 0 of

encryption uses S-box[−2r�]−1r. Since round 0 does not apply SBR, this value is 0R, the total

iterative rotation value of the S-box in round 0. Advancing to round 1, the S-box rotates by

1r, and 1R = 0R � 1r. Thus S-box lookups in round 1 can follow the form SB(byte � 1R)

using S-box0. Repeating this process out through round 10, 10R = 9R � 10r = −2r � −1r �

1r � · · ·� 10r, and S-box0 lookups follow the form SB(byte � 10R). Thus, (� iR) replacing

every instance of SBR creates an equivalent algorithm.

43

3.3.2 Mapping Rotate to an Operation in GF(28).

Figure 3.12 shows an alternative view of the fault propagation model using this

additive definition of S-box rotation. With S-box rotation now defined as addition mod

256, leveraging the existing attack relations might now be possible.

10∆S1
0 = (10S0

0 � 10R) ⊕ (10S̄0
0 � 10R)

Assuming � distributes over addition (⊕) in GF(28), then 10∆S1
0 = 10R � (10S0

0 ⊕
10S̄0

0) =

10R� 2b. Similarly, 10∆S1
4 = (10S0

4 � 10R) ⊕ (10S̄0
4 � 10R) = 10R� (10S0

4 ⊕
10S̄0

4) = 10R�

b. Now assuming � distributes over multiplication in GF(28), then 10∆S1
0 = 2(10R� b)

and 10∆S1
4 = (10R� b). Letting (10R� b) = v, the final result is 10∆S1

0 = 2v, 10∆S1
4 = v.

This result restores the original 10∆S1 column relations regardless of 10R, requiring no

new attack analysis to match the reductions established in the existing attack by using

S-box0. However, this conclusion requires proving the assumptions that � distributes over

both addition and multiplication in GF(28). Testing these assumptions with discrete values

shows � does not distribute over either addition or multiplication in GF(28), so the initial

fault propagation remains unexploitable.

1 � (2 × 3) = 1 � (6) = 7 , 12 = 3 × 4 = (1 � 2) × (1 � 3)

1 � (2 ⊕ 3) = 1 � (1) = 2 , 7 = 3 ⊕ 4 = (1 � 2) ⊕ (1 � 3)

3.3.3 Alternate Attack Analysis on Standard AES.

Since analysis of SBR as � is not sufficient to extend the attack, an analysis of the

existing attack described in 3.2.2 with a slightly different way of thinking follows. This

analysis removes the need for full inspection of all S-boxi properties. Figure 3.13 shows

10∆S of the standard AES attack for reference.

44

Figure 3.12: XOR of Correct and Faulty RAES-128 Encryption, Rounds 8-10.

Figure 3.13: XOR of Correct and Faulty AES-128 Encryption, Round 10.

45

Examining 10∆S1 which is known, 127 10∆S0
0 values are possible out of 255, this set of

values is {10∆S0
0}. Thus, the likelihood of a random value in {1,255} being in {10∆S0

0} is 127
255 .

This likelihood is also true for 10∆S0
4, 10∆S0

8, and 10∆S0
12. So, for a given 2b ∈ {10∆S1

0}, the

probability of 2b ∈ {10∆S1
0}, b ∈ {10∆S1

4}, b ∈ {10∆S1
8}, and 3b ∈ {10∆S1

12} is 1× 127
255 ×

127
255 ×

127
255 .

Since there are 127 2b ∈ {10∆S0
0}, the number of 2b expected to satisfy the above relation

and be in each set is 127 × (127
255)3.

The 256 possible 10K0 key byte values step back to 127 2b values. So, each valid 2b

value averages to an expected 256
127 keyspace for that byte. Thus, the average keyspace for a

valid 2b, b, b, 3b column is (256
127)4.

Combining the number of valid 2b columns with the keyspace for each valid 2b

column results in the total average keyspace of a column:

(127 × (
127
255

)3) × (
256
127

)4 = (
127
127

)4 ×
2564

2553 =
2564

2553 .

The expected keyspace per valid 2b and the expected number of valid 2b have no influence

on this reduction. Since columns are independent, applying the same relation to each of the

four columns creates a total reduction of: (2564

2553)4 ≈ 232.0677.

3.3.4 General Extension.

The above reworking of the existing attack on standard AES revealed the average

reduction across the S-box is independent of the number of resulting valid 2b or the

expected keyspace per valid 2b because these values cancel. Thus, no analysis needs to

be done around the Rotational S-box. The averages smooth out all inconsistencies and

discrete numbers. Therefore, regardless of the S-box used, the average resulting keyspace

is about 232.0677. Since, in round 10, 10R can be any value in {0, 1, ..., 255}, 256 of

these 232.0677 keyspaces exist. The total keyspace remaining after stepping back to 10∆S0 is

approximately 232.0677 × 28 = 240.0677.

The existing attack reduces in round 9 by stepping back each possible remaining 10K.

This extension has an increased work factor based on the larger 240.0677 remaining keyspace.

46

Additionally, stepping back 10K to 9K requires use of SubWord. However, because the

expanded encryption key uses a rotated S-box, each 240.0677 possible keys steps back 28

ways for each possible S-box rotation, further increasing the work factor to 248.0677. Since

extending an attack is the goal of this research, and the round 10 analysis contains the

essence of this DFA on the State attack while maintaining a much higher power to speed

ratio, this research only extends the round 10 portion of this attack.

Access to a second cipher pair allows an independent reduction to an alternate reduced

keyspace of approximately 240.0677. Intersecting these keyspaces creates the remaining

valid keyspace. Assuming the incorrect keys in each reduced keyspace are random,

240.0677 × 240.0677

2128 ≈ 2−47.8646 keys remain. Thus, only the valid K10 key should remain.

Recovery of the encryption key K0 still requires reversal of the key schedule.

3.3.5 Reversing the Key Schedule.

The previous section provides the theoretical keyspace reduction power of the attack

extension regardless of Rotational S-box Type implementation. The analysis shows that

full recovery of 10K is possible. With standard AES, recovery of 10K concludes the attack

because the key schedule is fully reversible. Following is an analysis of reversing the key

schedule for all RAES Types.

Knowing the S-box in standard AES makes reversal of the key schedule possible. The

RAES encryption key schedule uses S-box−1R, which is unknown. However, this S-box is

one of only 256 possibilities, meaning there are 256 potential encryption keys. Reversing

to each of these is trivial.

• Key Schedule 1. For key schedule 1, −1R = −1r is the XOR of all encryption key

bytes. Reversal of the expanded encryption key with a particular −1r reveals the first

16 bytes, 0K, the encryption key. Checking that the XOR of these bytes matches

the −1r value used to reverse each particular expanded key reduces the possible −1r

47

values. Since one −1r is valid out of 256, and 256 options are checked, −1r should

reduce to one possibility.

• Key Schedule 2. In key schedule 2, −2r is the XOR of all encryption key bytes 0K

and 0K = 0RK. Expanding this out to the expanded rotation key allows computation

of −1r. Checking this −1R against the value used to reverse the encryption key, like in

the key schedule 1 analysis above, should reduce to one possibility. Thus the same

reduction power is possible, requiring an extra step of key expansion.

If more than one 0K remain after this −1R check, two more reduction checks are

possible. First, rebuilding the expanded rotation key and calculating is associated 10R value

enables a check that this matches the 10R used to create 10K. If multiple possibilities still

remain, checking 9∆S0 relations provide a final reduction. Using round 9 relations is not

an unreasonable work factor like a full round 9 reduction because this instance only steps

back one 10K and few possible 9R should remain after the two prior reductions.

3.4 Theoretical Attack Summary

Overall, this attack extension is slightly less powerful, and less flexible to Eve’s

resources and constraints. With only one cipher pair, the extended attack is much

less powerful, effectively only able to reduce the keyspace to 240.0677 with a reasonable

work factor, where the existing attack could reduce the keyspace to 28 with reasonable

computational effort. However, if Eve has access to, or the capability to create two or

more cipher pairs, the attacks effectively have the same expected reduction power of full

keyspace recovery.

48

IV. Methodology

This chapter details the experimental methodology for verifying the theoretical results

of Chapter 3. First, Section 4.1 discusses the approach and expected results. Sections

4.2 through 4.7 define the experimental environment including boundaries, workload and

metrics. Finally, Sections 4.8 and 4.9 explain the experimental implementation.

4.1 Problem Definition

4.1.1 Goals and Hypothesis.

The goal of this research is to verify the theoretical analysis in Section 3.3.4 and

determine the actual attack power of DFA on the State on standard AES and research

driven rotational S-box AES designs. This analysis expects DFA on the State of standard

AES using one cipher pair reduction to produce an average keyspace of approximately

232.0677, while expecting all RAES Types to yield 240.0677. This research expands the overall

security analysis of a dynamic S-box AES to assess its practicality and usefulness compared

to standard AES and validates the existing theoretical DFA work on AES-128 [28].

4.1.2 Approach.

This research attacks both the standard AES-128 implementation with the existing

attack as described in Section 3.2.4 as a baseline and the four Rotational S-box AES-

128 implementations as defined in Section 3.2.2 with the extended attack as described in

Section 3.3.4. Specifically, focusing on 10K keyspace reductions and reductions of valid

10R allows verification of the theoretical analysis performed, and enables the analysis of

discrete reductions, not just expected averages. This discrete data sheds further light on the

underlying mechanics at work.

49

4.2 System Boundaries

The System Under Test (SUT) is the Cryptanalysis System. Because the focus is

several cryptanalysis techniques on different AES algorithms with the goal of key recovery,

the Component Under Test (CUT) is the Solver. The Solver solves the constructed DFE

by checking that the 10∆S0 relations hold. Other components of the system are the

cryptanalysis attack, the AES algorithm, the S-box, and the encryption environment. This

study limits the scope of these. The encryption algorithm is scoped to only AES-128

variants, specifically AES-128 and RAES-128 Types 1-4. Additionally, DFA attacks on the

State are the only cryptanalysis attacks considered. Lastly, the encryption environment is

restricted to software, rather than hardware, to more easily facilitate fault injection. Figure

4.1 depicts the system boundaries.

Figure 4.1: System Boundaries.

50

4.3 System Services

The Cryptanalysis System provides a key recovery service. The possible outcomes

are: (1) full recovery of the encryption key, (2) reducing the keyspace to an unsecure size

such that an exhaustive search is feasible in one hour on a personal workstation using an

Intel i7 CPU with 8 GB of memory, (3) reducing the possible keyspace but exhaustive

search remains computationally infeasible in one hour on a personal workstation using an

Intel i7 CPU with 8 GB of memory, or (4) discovering no information and the keyspace

remains unaffected. This study focuses on outcome (1) as this is the only theoretical result

of the attacks considered.

4.4 Workload

The workload submitted to the system is a correct ciphertext and several corresponding

fault injected ciphertexts. These pairs are what the DFA specifically exploits. Workload

parameters also include the fault injection timing and location data and the AES

implementation as a successful DFA on the State attack requires this knowledge. This

study limits the fault injection timing and location to 8S2
0. The plaintext and key sent to

the encryption algorithm should not change attack complexity, thus they are not workload

parameters, but instead randomly generated.

4.5 Performance Metrics

Attack efficacy dictates system performance. The number of faulty ciphertexts

required for full key recovery most significantly captures efficacy. Reductions at each stage

of the solving process more precisely capture this performance and allows comparison

to the theoretical power calculated. Lastly, timing metrics roughly gauge work factors.

However, since computation time is not the main focus and not of critical importance,

minimal measures control the testing environment. Overall, these metrics provide a total

51

picture of DFA attack power on standard AES-128 and the four Rotational S-box AES-128

implementations.

4.6 System Parameters

The system parameters are the attack implementation, computational resources, access

to the encryption machine, encryption environment, and any other available information

that might help the attack. Because this study limits its scope to DFA on the State attacks

and each depends on fault placement and AES implementation, these workload parameters

directly dictate the attack implementation. Computational resources are important because

they alter the time required to perform the attacks and put limits on the amount of

computation possible through memory limitations. If this system used a fully realized

attack, access to the encryption machine would be an important factor in choosing the

physical attack vector used to induce the faults. Because DFA attacks rely on inducing

faults through physical phenomena, the encryption hardware used affects the practicality

of an attack. The examined attacks require introduction of faults to specific positions of

the algorithm at specific times, and exploitable hardware is necessary. However, because

the encryption environment here is in software which also simulates faults (inducing them

intentionally through code as part of the encryption algorithm rather than through actual

physical processes on the encryption hardware) an exploitable encryption environment is

not a concern for this research. Any prior knowledge of the encryption system beyond the

encryption algorithm provides information that may reduce the possible keyspace.

4.7 Factors

The only factor of this study is attack implementation which has five levels relating

the standard AES and the four Rotational S-box AES Type implementations. This study

fixes all other parameters to one value. To reiterate these values, Figure 4.2 displays each

significant parameter.

52

4.8 Evaluation Technique

Evaluation occurs in multiple reduction steps. Simulations artificially inject faults

at arbitrary positions and times of the encryption algorithm without the overhead

of specialized hardware that true implementation and measurement would require.

Additionally, simulations produce actual data which provides a discrete and quantified set

of data to analyze, something missing in a purely analytic technique. This experimentation

produced a simulated environment, (R)AES-DFA v1.0, in Python 2.7.3. Appendix A covers

the steps taken to validate this software’s functionality.

Factors Levels

Encryption Algorithm AES, RAES Type 1, RAES Type 2, RAES Type 3,

RAES Type 4

Key Length 128 bit

Plaintext Encrypted Random bits

Encryption Key Random bits

Attack Type DFA on the State

Fault Induction Location Round 8, Byte 0 before MixColumns

Encryption Environment Software

Computational Resources 2011 2.8 Ghz i7 iMac with 8GB 1333 Mhz DDR3 Ram

Figure 4.2: Factors and Levels.

The simulation runs a given variant of AES for each plaintext and key pair given; first

running correctly and then injecting a random fault at the specified position and timing

53

within the algorithm. The solver reduces the keyspace as much as possible from this

cipher pair as described in Section 3.3 using round 10 reductions. Reductions continues

with additional faulty ciphertexts until full key recovery. Validation that the attack was

successful occurs by checking the recovered key and plaintext values with the actual input

data.

The attack implementation treats each potential (10K, 10R) as part of the reduced

keyspace. This pairing counts two identical 10K recovered with different 10R as separate

valid 10K keys. Pilot studies of the attack implementation revealed that round 10 reductions

could only ever reduce the keyspace to 2 regardless of the number of cipher pairs used.

Investigation revealed one 10K with two 10R values always made this keyspace of two,

not two 10K each with one 10R. Several stages capture all keyspace reductions. First,

cipher pairs reduce the keyspace to two. Then key schedule reductions occur to reduce

the 10K keyspace to one and correctly reverse to the encryption key 0K. Notable data for

analysis captured at each stage includes the size of the remaining keyspace, the valid 10R

values, and computation time. Capturing additional verification and replication data make

this experimentation fully repeatable. This data includes the plaintext and key used, the

resulting ciphertext, and the XOR fault used each time for a new faulty ciphertext. The

captured information provides a robust data set from which future work can replicate this

work to validate, correct, or improve upon the algorithms, data collected, and following

analysis.

4.9 Experimental Design

With only one factor, this experiment is trivially a full-factorial experimental design of

the simulated attack described in Section 4.8 requiring the following number of iterations:

(# successful attacks developed + # existing comparable attacks)×(#repetitions). Setting

the number of repetitions to 2,500 results in (4 + 1)× 2, 500 = 12, 500 iterations. Although

encryption is deterministic, this experiment only uses one class of keys and plaintexts, that

54

is, completely random. As such, each repetition uses a random key and plaintext, thus

changing the resultant ciphertext. The simulation does nothing to standardize the faults

injected across attack implementations for each repetition. The large number of repetitions

follow from the extreme magnitude of the population and the small time cost of additional

operations discovered in pilot studies. A minimum of (2128 plaintexts) × (2128 keys) ×

(256 fault 1 values) × (255 fault 2 values) ≈ 2272 attack vectors exist for any given attack

implementation. Thus, even a sample of 2500 is only roughly 2−254% of the possible attack

vectors. Analysis uses a 95% confidence level.

4.10 Methodology Summary

The goal of this study is to determine the security of a dynamic S-box AES design by

attacking AES-128 and RAES-128 implementations with simulated DFA. The SUT is the

Cryptanalysis System, which reduces the entropy of the encryption key. The CUT is the

Solver of DFE and recovers the encryption key. The factor tested is attack implementation.

Simulated attacks provide more meaningful data for analysis while remaining cheap and

easy to implement. This data allows verification of the theoretical analysis in Section 3.3.

55

V. Analysis of Experimental Attack Results

This chapter analyzes the experimental data captured as described in Section 4.8. The

focus of this chapter is validation of the theoretical average keyspace reduction after 1

pair of ciphertexts leveraging round 10 reductions. This chapter also analyzes reductions

after multiple pairs along with a few other interesting discussions and observations about

the data. The data captured for each attack includes: the AES implementation; total

runtime required; number of faulty ciphertexts required; the plaintext encrypted; the

encryption key; the recovered encryption key; runtimes required for each faulty ciphertext

reduction; keyspace remaining after each faulty ciphertext reduction; the fault value that

when XOR’ed with 8S2
0 is the resulting faulty value used moving forward; the resulting

faulty ciphertext; the average columnspace after each faulty ciphertext reduction; and, if a

RAES implementation, the number and values of 10R still valid after each faulty ciphertext

reduction.

5.1 Existing Attack

Prior research establishes a round 10 reduced keyspace of 232, analysis in Section

3.3.3 establishes a slightly higher 4, 501, 500, 262 ≈ 232.0677 average. Figure 5.1 displays

the frequency of reduced keyspaces after one pair of faulty ciphertexts with the expected

and observed averages marked. This data greatly departs from a normal distribution with

a very long and non-continuous tail. The observed mean is 5, 404, 337, 163 ≈ 232.3314,

902, 756, 005 ≈ 229.7497 larger than the theoretical average. However, the log2 of the

observed and theoretical means only differ by 0.2637. Figure 5.2 represents this same

data in a boxplot. This highlights the skew of the data.

56

Reduced Keyspace from 1 Cipher Pair Round 10 Reduction on AES−128

Remaining Possible Keyspace

F
re

qu
en

cy

5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10 3.0e+10 3.5e+10

0
20

0
40

0
60

0
80

0
10

00

1 3 1 1 1 1 1

Theoretical Mean
Observed Mean

Figure 5.1: Histogram of AES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction.

●

●
●

●●

●●

●

●

●
●

●

●●

●●

●

●

●●
●●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●
●

●

●●

●●

●

●

●

●●

●●

●
●

●

●●

●●
●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

2.
5e

+
10

3.
0e

+
10

3.
5e

+
10

Reduced Keyspace from 1 Ciper Pair, Round 10 Reduction

AES−128

R
ed

uc
ed

 A
E

S
 K

ey
sp

ac
e

Theoretical Mean
Observed Mean

Figure 5.2: Boxplot of AES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction.

57

Examining the quartile values in Figure 5.3, the first two quartiles occur in a range

of 693, 043, 200, while the third quartile spans a range of 3, 303, 014, 399 and the last

27, 981, 250, 661. This analysis explores this extreme skew in density later. Figure 5.4

displays the data as log2 transformed which helps to minimize this skew, although a bottom

heavy density remains apparent. Figure 5.5 displays this same log2 transformation applied

to the histogram. An additional line to mark the observed log2 mean is also added.

0% 25% 50% 75% 100%

3, 317, 776, 000 3, 538, 944, 000 4, 010, 803, 200 7, 313, 817, 592 35, 295, 068, 253

231.6275 231.7206 231.9012 232.7679 235.0387

Figure 5.3: Quartiles of AES-128 10K Keyspace, 1 Faulty Ciphertext Round 10 Reduction.

●

●
●
●

31
.5

32
.0

32
.5

33
.0

33
.5

34
.0

34
.5

35
.0

Log2 Transformed Reduced Keyspace from 1 Ciper Pair, Round 10 Reduction

AES−128

R
ed

uc
ed

 2
x A

E
S

 K
ey

sp
ac

e

Theoretical Mean
Observed Mean

Figure 5.4: Boxplot of Log2 Transformed AES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction.

58

Log2 Transformed Reduced Keyspace from 1 Cipher Pair Round 10 Reduction on AES−128

 2x Remaining Possible Keyspace

F
re

qu
en

cy

31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0

0
10

0
20

0
30

0
40

0
50

0

1 3 3 1

Theoretical Mean
Observed Log2 Transformed Mean
Observed Mean

Figure 5.5: Histogram of Log2 Transformed AES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction.

This transformation creates a more interesting representation of the data. The data

manifests in several high density spikes approximately around 31.8, 32.9, 34.9 and 35.9.

Each grouping appears to be close to a normal distribution, and lessening in magnitude with

each additional power of 2. This observed data makes sense as the most likely theoretical

average is (127 × (127
255)3 × 24)4 = 3, 970, 610, 628 ≈ 231.8867, and each time another key

byte has 4 possibilities rather than 2, an increase by one power of 2 occurs. As these

4 possibility key bytes are unlikely with probability (1/127), the diminishing frequency

fits. This analysis explains the drastic skew in density and the inter-group distributions.

The close to normal distributions around these groupings also require examination. Part

of the reduction power is the number of b relations expected to hold per column. The

average is 127 × (127
255)3

≈ 15.6889. However, discrete values cannot be decimal creating

slightly higher and lower values. If each column has 15 valid relations, 231.8867 becomes

59

(15 × 24)4 = 3, 317, 760, 000 ≈ 231.6275, and at 16 becomes (16 × 24)4 = 4, 294, 967, 296 =

232. Combinations of 15 and 16 valid relation columns fall between these values and closer

to the average (e.g., (15×24)2×(16×24)2 = 3, 774, 873, 600 ≈ 231.8137). The number of valid

b relations does not have nearly the same magnitude of effect on the expected remaining

keyspace as the number of valid byte keys. This smaller effect explains the intra-group

distributions.

Figure 5.6 shows the remaining keyspace after two faulty ciphertexts. Two attacks

still had 4 possible 10K values and a third had 16 possible 10K values. The attacks with

four keys remaining manifest either in one byte with four possible values and the 15 other

bytes fixed or two bytes with two possible values and the 14 other bytes fixed. Similarly,

the attack with sixteen possible keys remaining manifests in one of several possibilities:

two bytes with 4 possible values and the other 14 fixed; one byte with 4 values, two with 2

and the other 13 fixed; or four bytes with 2 values and the other 12 fixed. However, since

no attacks yielded 2 possible 10K values after two faulty ciphertexts, only bytes with four

possible values likely create the overlap of these three keyspaces. The observed remaining

mean keyspace is 2497+2+2+16
2500 = 1+ .0084, significantly larger than the expected 1+2−63.8646.

The analysis of multiple faulty ciphertexts in Section 3.3.4 assumed the non-valid keyspace

bytes were random because claiming an underlying relationship requires substantial data,

analysis and understanding. This attack implementation did not collect the actual potential

keyspace values at intermediate reduction stages. Further analysis requires at least this

data, so explaining the unexpected non-valid keyspace bytes after two faulty ciphertexts

is not possible. However, these three attacks with multiple possible 10K values remaining

suggest the non-valid keyspace bytes are not random.

The quartiles show that the median value is well below the theoretical average,

however the extreme upper half values skew the mean above the median. Overall, the

theoretical averages appear to underestimate the true average reduction by not properly

60

accounting for either the likelihood of the one 4 key byte associated b value being valid, or

the associated drastic increase in remaining keyspace. Although still an underestimation,

the theoretical average appears to more closely estimate the average log2 remaining

keyspace. Additionally, the reduction power between two cipher pairs does not provide

enough information to adequately predict the number of cipher pairs required on average.

Reduced keyspaces associated with faulty ciphertexts appear non-random and to have some

increased association.

Reduced Keyspace from 2 Cipher Pair Round 10 Reduction on AES−128

Remaining Possible Keyspace

F
re

qu
en

cy

5 10 15

0
50

0
10

00
15

00
20

00
25

00

2 1

Theoretical Mean
Observed Mean

Figure 5.6: Histogram of AES-128 10K Keyspace, 2 Faulty Ciphertext Round 10 Reduction.

As mentioned in Section 4.5, because this experimentation used no explicitly

controlled testing environment, rigorous analysis of timing data is not valid. However,

to provide a context to the work factor required for the attack, a histogram of attack times

follows in Figure 5.7. The average attack time is 0.1747 seconds.

61

Histogram of DFA on AES−128 Runtimes

Attack Runtime (seconds)

N
um

be
r

of
 A

tta
ck

s

0.16 0.18 0.20 0.22 0.24 0.26

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Figure 5.7: Histogram of AES-128 DFA Runtime.

5.2 Attack Extension

Section 3.3.4 established an average theoretical remaining keyspace of 240.0677 after

1 cipher pair round 10 reduction on RAES implementations. This section analyzes the

observed experimental data in an effort to validate this expected theoretical analysis. First,

Figure 5.8 shows the log2 transformed boxplot of this reduction across each of the four

RAES-128 Type implementations. Theoretical analysis resulted in the same reduction

regardless of Type, these observed data agree. Formally checking this conclusion with the

Tukey multiple comparisons of means test in Figure 5.9 confirms that there is no statistical

difference in the average reduction power regardless of RAES implementation. The 0

RAES Implementation Type is the combination of all Types 1-4. Thus, analysis moving

forward is performed on all RAES implementations treated as one population.

62

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●●●●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Type 1 Type 2 Type 3 Type 4

40
41

42
43

Log2 Transformed Reduced Keyspace from 1 Ciper Pair, Round 10 Reduction

Rotational AES−128 Implementation Type

R
ed

uc
ed

 2
x K

ey
sp

ac
e

Theoretical Mean
Observed Log2 Transformed Mean
Observed Mean

Figure 5.8: Boxplots of Log2 Transformed RAES-128 10K Keyspace, 1 Faulty Ciphertext

Round 10 Reduction.

−6e+10 −4e+10 −2e+10 0e+00 2e+10 4e+10

4−
3

4−
2

3−
2

4−
1

3−
1

2−
1

4−
0

3−
0

2−
0

1−
0

95% family−wise confidence level

Differences in mean levels of factor(rType)

Figure 5.9: Tukey Multiple Comparisons of Means Test of RAES-128 Types, 1 Faulty

Ciphertext Round 10 Reduction.

63

Figure 5.10 is a histogram of the 1 cipher pair, round 10 reduction on all Rotational

S-box AES implementations. This reduction, although much closer to normal than the

existing attack’s data still maintains the extreme skew in density with a long right tail

and high outliers. The expected theoretical mean is 1, 152, 384, 067, 070 ≈ 240.0677. The

observed mean is 1, 236, 479, 882, 848 ≈ 240.1693, 84, 095, 815, 778 larger than expected.

However, the difference of the log2 of the means is only 0.1016.

Reduced Keyspace from 1 Cipher Pair Round 10 Reduction

Remaining Possible Keyspace

F
re

qu
en

cy

2e+12 4e+12 6e+12 8e+12

0
10

00
20

00
30

00

9 4 3 1 1 1 1 2 1 3

Theoretical Mean
Observed Mean

Figure 5.10: Histogram of RAES-128 10K Keyspace, 1 Faulty Ciphertext Round 10

Reduction.

Examining the quartiles in Figure 5.11, like in the existing attack on AES, the median

is below the expected average. However, now the third quartile contributes significantly

less to the skew. Instead, the immense magnitude of the values in the last quartile produce

this skew. Due to the extreme scaling of keyspaces, like before in the existing attack

analysis, using a log2 transformation helps make this more meaningful data. Figure 5.12

64

displays the transformed histogram. The result is a normal distribution centered near the

theoretical average. Unfortunately that does not encompass all the data; another near

normal distribution centered near 41.5 and several extreme right outliers also are present.

Figure 5.11: Quartiles of RAES-128 10K Keyspace, 1 Faulty Ciphertext Round 10

Reduction.

Log2 Transformed Reduced Keyspace from 1 Cipher Pair Round 10 Reduction

 2x Remaining Possible Keyspace

F
re

qu
en

cy

39 40 41 42 43

0
50

0
10

00
15

00

1 3 1 1 1 1 2 4

Theoretical Mean
Observed Mean

Figure 5.12: Histogram of Log2 Transformed RAES-128 10K Keyspace, 1 Faulty

Ciphertext Round 10 Reduction.

65

The normal distribution hot spot near 240 fits with the theoretical analysis. The

secondary distribution around 241.5 and the lack of tertiary and quaternary reduction pockets

as seen in the existing analysis need further investigation. The existing attack had those hot

spots from the unlikely ‘high’ number of key byte stepbacks (i.e., the 4 key byte b values).

Now for an attack to deviate from the rest, each of the 256 S-boxes used need to hit the

‘high’ key byte stepbacks. This property has an averaging effect making the values seen

more consistent: (total reduced keyspace) = ((S-box0 reduced keyspace) + (S-box1 reduced

keyspace) + . . . + (S-box255 reduced keyspace)) = (Average S-boxi reduced keyspace) ×28.

As discussed in the analysis of the existing attack, the number of valid b relations has

a much smaller effect on keyspace size than the number of valid byte keys per valid b.

Examining the maximum value of 243.0384, if every S-box had the same stepback properties

as S-box0, only each of the 256 S-box stepbacks resulting in about a 235 reduced keyspace

would achieve such a large remaining keyspace (235 × 28 = 243). Since Figure 5.5 holds

only four attacks with keyspaces near 235, seeing this 256 times for a single discrete attack

would be extremely unlikely. With reasonable certainty, the other S-box’s do not have

such uniform stepback properties. This variability may be due to S-box construction using

multiplicative inverses, but rotating the S-box removes this property. Thus a histogram

like Figure 5.5 for an alternate S-box would likely have a much greater variance with high

density hot spots spaced more sporadically and more extreme outlier values.

As mentioned in Section 4.8, the keyspace calculation depends on 10R values, thus

one 10K and two 10R create an observed keyspace of two. Pilot studies revealed this

duplicity is exactly what happens. These studies revealed that, regardless the number of

faulty ciphertexts used, Round 10 column reductions maximumly reduce the keyspace to

two 10R and one 10K. The experimental data shows these two possible rotation 10 values

are always 128 apart. A rotation of 128 is a special case because a half rotation is its own

inverse, b � 128 � 128 = b � 256 = b. This addition of 128 mod 256 flips the leftmost

66

bit which is exactly an XOR of 128. Thus, SBR(128) = � 128 = ⊕ 128. This one case

of R = 128 is a special case of the general extension tried in Section 3.3.2. Analyzing this

property in the additive SBR fault propagation model outlined in Figure 3.12 from 10∆S0

to 10∆S1, if 10R = θ is valid, then 10R = θ � 128 is also valid.

SBR(10S0
0, θ) ⊕ SBR(

10S̄0
0, θ) = 10S1

0 ⊕
10S̄1

0 = 10∆S1
0

SBR(10S0
0, θ �128) ⊕ SBR(10S̄0

0, θ �128) = SBR(SBR(10S0
0, θ), 128) ⊕ SBR(SBR(10S̄0

0, θ), 128)

= (SBR(10S0
0, θ) ⊕ 128) ⊕ (SBR(10S̄0

0, θ) ⊕ 128)

= (SBR(10S0
0, θ) ⊕ SBR(

10S̄0
0, θ)) ⊕ (128 ⊕ 128)

= 10∆S1
0 ⊕ 0 = 10∆S1

0

The theoretical expected average keyspace of Section 3.3.4 overlooks this (� 128)

equivalence. Including this additional information, the theoretical mean after one faulty

ciphertext drops to 239.0677. Accounting for this equivalence in the observed data, the

observed mean is 239.1693. This adjustment does not consider 10R not 128 apart with

the same 10K which possibly creates an overcount of remaining 10K. However, any such

overcount is likely negligible. The increased observed mean remaining keyspace over the

theoretical existing AES attack is likely due to an inherent skew in the data not fully or

properly captured in the theoretical analysis. Although the theoretical mean reductions

are underestimations, they are still great estimates of the magnitude of the remaining

keyspace as evidence in the close log2 transformed means. In most areas of work, an error

of 239.1693 − 239.0677 = 42, 071, 374, 371 is not considered negligible, or even acceptable.

However, the difference of the log2 of the means is only 0.1016. For purposes of knowing

the general work factor and computing power necessary to perform an attack, the theoretical

analysis is more than sufficient.

Figure 5.13 shows the number of valid 10R values after two ciphertext reductions.

Every single attack reduced to two 10R values at this point meaning just the correct 10R and

67

10R ⊕ 128 remain. Since these share the same reduced keyspaces, the observed remaining

keyspace overcounts the actual remaining keyspace by a factor of 2. Figure 5.14 displays

the log2 transformed histogram of the true remaining keyspace accounting for this double

count.

Reduced Rotationspace from 2 Faulty Ciphertexts Round 10 Reduction

Number of Remaining R10

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0

0
20

00
40

00
60

00
80

00
10

00
0 10000

Figure 5.13: Histogram of Remaining R10, 2 Faulty Ciphertext Round 10 Reduction.

The vast majority of the time, specifically 9, 263 of 10, 000 attacks, a reduction to one

valid 10K occurs after two faulty ciphertexts. However, compared to the attack on AES, a

larger possible remaining keyspace of 64 is possible after this double reduction, with 2 and

4 much more common. The updated theoretical expected remaining keyspace accounting

for the double count is 1+2−49.8646. The observed mean remaining 10K keyspace is 1+.1893.

As with the existing attack, proper explanation of this disparity is not possible without

further data and analysis. Figure 5.15 shows that reducing with a third faulty ciphertext

leaves just 8 total attacks that still require reduction at 2 and 4 10K values. Application of

the key schedule reversal reductions would likely reduce these to just 1 10K value, however

this attack implementation did not attempt that reduction.

68

Log2 Reduced Keyspace from 2 Faulty Ciphertexts Round 10 Reduction

 2x−1 Observed Remaining Possible Keyspace

F
re

qu
en

cy

0 1 2 3 4 5 6

0
20

00
40

00
60

00
80

00

289 419
19 8 1 1

Theoretical Mean
Observed Mean

Figure 5.14: Histogram of Log2 Transformed Observed/2 RAES-128 10K Keyspace, 2

Faulty Ciphertext Round 10 Reduction.

Reduced Keyspace from 3 Faulty Ciphertexts Round 10 Reduction

x/2 Remaining Possible Keyspace

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
20

00
40

00
60

00
80

00

729

7 1

Figure 5.15: Histogram of Observed/2 RAES-128 10K Keyspace, 3 Faulty Ciphertext

Round 10 Reduction.

69

Figure 5.16 shows that total keyspace reduction requires a maximum of four cipher

pairs, thus no further keyspace histograms are necessary for analysis. The increased

remaining keyspace of 239.1693 after 1 faulty ciphertext does not explain the increased

number of remaining valid 10K after multiple faulty ciphertexts compared to the theoretical

expected value or the existing attack on AES. Since only the two 10R 128 apart remain

after two or more faulty ciphertexts and these share the same keyspace, effectively only

the keyspace associated with one S-box remains. Were the reductions between all S-boxes

uniform, Figure 5.14 would be indistinguishable from a log2 transformation of Figure 5.6.

Therefore, the less evenly distributed key byte densities of rotated S-boxes, which do not

change the average reduction, impact discrete cases by increasing overlapping matches

between reductions. Figure 5.17 displays the runtime required for full key recovery.

Meaningful in depth analysis of runtimes is not valid. However, this increased average

runtime of 11.38 seconds - over 60 times the runtime required for the existing attack on

AES - provides context for the work factor of the attack.

Number of Cipher Pairs Required for Key Recovery in DFA on RAES−128

Number of Cipher Pairs Required

F
re

qu
en

cy

2.0 2.5 3.0 3.5 4.0

0
20

00
40

00
60

00
80

00

729

8

Figure 5.16: Histogram of Required Cipher Pairs for Full Key Recovery on RAES-128.

70

Histogram of DFA on RAES−128 Runtimes

Attack Runtime (seconds)

F
re

qu
en

cy

10 11 12 13 14 15 16 17

0
20

0
40

0
60

0
80

0
10

00

1 3 2 3 2 2 2 2 1 1 2 2 1 1

Figure 5.17: Histogram of RAES-128 DFA Runtime.

5.3 Design Suggestions

Recovery of the round 10 encryption key is the crux of existing DFA attacks. RAES

implementations create more complexity in reversing 10K to the encryption key. Since the

key schedule does not need to be invertible (both encryption and decryption logically step

forward through the key schedule, only optimization possibly uses invertibility), adding

further complexity to this algorithm such that reversal is infeasible would weaken these

attacks. Changing the key schedule entirely, creating a one way function would also

accomplish this goal, but modifying the existing key schedule requires less alterations and

would take less work to vet since over a decade of research and use well establish the

foundations of the existing key schedule. A modified key schedule which creates three

expanded keys follows.

• Key Schedule 3. The RAES key schedule 2 creates two expanded keys. As intended,

the first is the expanded rotation key. However, the second is the expanded key

71

schedule rotation key. XORing all 16 bytes of each round creates expanded key

schedule rotation values. These values define the S-boxi used in the SW operation

of the third key expansion. This third expanded key built is the expanded encryption

key.

Previously, the expansion of the expanded encryption key only relied on one S-boxi

creating 256 possible ways to rebuild the encryption key from 10K. This new scheme uses

a rotation value for each round of the encryption key schedule effectively creating a (28)10

work factor to reverse 10K to the encryption key. Now, even with a successful DFA on the

State, reversal through the key schedule is computationally infeasible. Instead, Eve needs

to perform this DFA attack on each round (10K enables decryption to the end of round 9,

9K enables decryption to the end of round 8, etc.) until the work factor is computationally

feasible. This attack method increases the resources and access required of an attacker by

increasing the number of faulty ciphertext pairs required. DFA on the Key Schedule could

possibly bypass some of this work factor or leverage a more powerful fault injection, but

since each round rotates by a separate value, full reversal would still likely be infeasible

or highly costly with few faults. Following is an updated list of implementations which

includes this new key schedule.

• RAES Type 1. Key Schedule 1 and Rotation Reduction 1

• RAES Type 2. Key Schedule 1 and Rotation Reduction 2

• RAES Type 3. Key Schedule 2 and Rotation Reduction 1

• RAES Type 4. Key Schedule 2 and Rotation Reduction 2

• RAES Type 5. Key Schedule 3 and Rotation Reduction 1

• RAES Type 6. Key Schedule 3 and Rotation Reduction 2

72

5.4 Analysis Summary

The mean observed remaining keyspace after applying the existing attack to AES-128

is higher than expected. The theoretical analysis explains the range and relative densities

of values seen, but does not fully account for the high outliers. However, this analysis still

provides a good estimate of the general expected complexity and reduction power. Analysis

of the observed extension data reveals that the S-box rotation only introduces a complexity

of 128, not 256 for DFA attacks because � 128 = ⊕ 128. Updating the theoretical analysis

to include this information reduces the expected mean to 239.0677. This theoretical mean also

underestimates the observed remaining keyspace, but again the theoretical analysis explains

the range and relative densities of the values seen, while not fully accounting for the high

outliers. This analysis still provides a good estimate of the general expected complexity

and reduction power. The increase in attack time from AES-128 to RAES-128 highlights

the increased complexity RAES introduces. Altering the RAES key schedule creates an

effectively one way expanded encryption key expansion which mitigates DFA on the State.

73

VI. Conclusion

Overall this research shows initial progress into the extension of applying existing

DFA techniques to Dynamic S-box AES implementations. This research uses RAES-128

for non-trivial simplicity, proof of concept, and flexibility in initial exploratory attempts.

Analysis produced a reasonable attack requiring one fault on the State in round 8, with

full key recovery possible with two or more faulty ciphertexts. The theoretical analysis of

the existing attack on AES slightly overestimates the observed average reduction power.

Analysis of the extension’s experimentation data revealed additional information allowing

the theoretical analysis to reduce to 239.0677. This value also slightly overestimates the

observed average reduction power.

6.1 Impact

This research reveals RAES-128 Types 1-4 are nominally more secure than AES-

128 against DFA attacks on the State. Therefore, these RAES implementations should

still incorporate current DFA mitigation techniques when securing high value data. The

proposed implementations, RAES-128 Types 5-6, should make key reversal more difficult

and costly, protecting the encryption key. However, DFA still enables full decryption with

sufficient resources. Therefore, RAES-128 Types 5-6 should still incorporate current DFA

mitigation techniques when securing high value data. Despite the potential of RAES-

128 Types 5-6, this paper still recommends use of non-proprietary best practice AES

implementations following the guidelines established in [2] because these platforms are

transparent, well established and regularly publicly reviewed and updated.

6.2 Contributions

This research made several contributions to cryptology.

74

• This research determines extension of current DFA attacks to Dynamic S-box

AES variants is possible. Chapter 3 extends DFA on the State to RAES-128

implementations.

• This research reveals expected keyspace reduction power of DFA extensions.

Section 3.3.4 expects DFA on the State of all four RAES-128 implementations to

have a reduction power of 2−88.9323.

• This research builds functional attacks which demonstrate full key and plaintext

recovery. Chapter 5 discusses how the (R)AES-DFA attack simulation platform

successfully attacks AES-128 and all RAES-128 implementations.

• This research provides an easy to follow and self-contained resource which

walks through the mechanics and analysis of DFA attacks. Chapters 2, 3 & 5

create a thorough introduction to DFA on the State.

• This research appreciably adds to the overall security analysis of Dynamic S-box

AES variants. Chapters 3 & 5 provide insight on DFA concerns.

• This research contributes to the literature of theoretical analysis. Chapter 3

updates the existing analysis of DFA on the State of AES-128, and yields new

analysis of DFA on the State of RAES-128. Chapter 5 compares theoretical analysis

to experimental data.

• This research helps inform and shape future discussions of cryptographic

standards and algorithmic design decisions. An irreversible key schedule would

significantly mitigate DFA attack power.

6.3 Future Work

This research extends to a simple non-trivial Dynamic S-box AES variant. As such,

many vectors of improvement, expanded scope, and future work exist. Most directly,

75

this manifests in leveraging the round 9 relations with a reasonable work factor and

extending DFA on the State to RAES-192 and RAES-256 implementations. Also, the

current theoretical analysis models need further attention to fully and more accurately

capture the expected reduction power of attacks. Other work includes implementing,

testing, and attacking the proposed RAES implementations, Types 5 and 6, or one similar

which theoretically makes key reversal computationally infeasible from the last round

key. Extending other DFA attacks, specifically DFA on the Key Schedule to RAES

implementations is another area of interesting future work. The last area of future work

is extending all DFA attacks to other Dynamic S-box variants.

76

Appendix A: Discussion of Rotational S-box Design Decisions

AES-KDS as described in [22] leaves several implementation details open to

interpretation. This appendix first presents higher level questions, then discusses case and

type specific ambiguities.

The most significant unknown is directly related to the S-box rotation. The round

rotation value “...is used to rotate the S-box. The resulting S-box is used during the

SubBytes operation.” And “each round AES-KDS S-box can have 256 possible entries.

Totally there are 10 rounds. So total number of possible S-boxes is given by,

256 × 256 × 256 × 256 × 256 × 256 × 256 × 256 × 256 × 256 = 280”.

These passages make clear each round rotates the S-box, but do not define if this is the

standard AES S-box or the previous round’s S-box. That is, it is not well defined if the

application of RotSBox is iterative. The only clue is provided by the pseudo code. Below

is the section of the pseudo code for Case 2 encryption rounds 1 through 9:

for(round=1;round<=9;round++)

{

rotate=(expanded key[round*4]ˆexpanded key[round*4+1]

ˆexpanded key[round*4+2]ˆexpanded key[round*4+3])&mask;

create s box(s box,rotate);

// function to rotate S-box to left by a value equal to rotate

substitute bytes(state,s box);

shift row(state);

mix column(state);

add round key(round*4,state,expanded key);

}

77

For this code to work as expected and described in [22], these function calls must be by

reference. Otherwise, create s box(s box,rotate) would create a newly rotated S-

box that is never used in substitute bytes(state,s box) and further the state would

never be updated. Thus, given only this information, an iterative S-box rotation is the most

logical conclusion.

The other high-level problem is that the provided pseudo code does not provide

sufficient detail to make data structures, variables, and operations well defined. Several

instances of this lack of definition are now provided.

The first case of non-explicit definition is the pseudo code function

create s box(s box,rotate), which is described only by the comment “\\ function to

rotate S-box to left by a value equal to rotate”. This follows the logical explanation of the

RotSBox step, however no explicit definition or pseudo code is provided. This allows for

the ambiguity of an iterative S-box to remain. As such, only a logical application of the

description within the paper and pseudo code can be applied.

A similar problem exists with key expansion(expanded key,key,s box). This

pseudo code function is only described by the comment ‘\\ as in original AES’. The pseudo

code snippet below shows the context of key expansion as used in the key schedule sec-

tion of the algorithm:

rotate=temp;

create s box(s box,rotate);

key expansion(expanded key1,key,s box);

// as in original AES

for(i=0;i<44;i++)

fprintf(ky1,"%lx ",expanded key1[i]);

On a high level, this code appears to set a rotate value and rotate the S-box by this value.

78

Then, the encryption key is expanded using the standard AES key expansion algorithm

with the exception that S-box lookups use this rotated S-box. The resulting expanded

key is saved as expanded key1. No explicit definition or pseudo code is provided for

key expansion, so logical interpretation is necessary.

Variable specific problems are also present in the pseudo code. For both Type 1 and 2

key schedules, the variable key receives a hard coded value. Below are pertinent snippets

of code from each of these:

Type 1

unsigned char key[16]=1234567890ABCDEF;

...

create s box(s box,rotate);

key expansion(expanded key,key,s box);

Type 2

unsigned char key[16]=1234567890ABCDEF;

...

create s box(s box,rotate);

key expansion(expanded key1,key,s box);

...

create s box(s box,shift);

key expansion(expanded key2,key,s box);

Logical interpretation of this would mean key expansion and thus encryption was not

dependent on the provided encryption key. If this were the case, encryption of a given

plaintext with two different keys would result in the same resulting ciphertext. However,

this is not the case as seen in the paper’s experimental results. Therefor, this must be

79

interpreted as an example key value provided to clarify its structure and use in the pseudo

code.

The next potential problem relates to Case 2 round rotation keys. The paper text

describes the reduction from round rotation key to round rotation value as the ‘XOR

operation of all the bytes’:

Suppose for a particular round j, if the round key value is

06ACB47D588A9ED837D50E923C4055B5 (each byte represented by 2-Hex

digits).

Here XOR operation of all the bytes is taken.

15(Hex)=06ˆACˆB4ˆ7Dˆ58ˆ8Aˆ9EˆD8ˆ37ˆD5ˆ0Eˆ92ˆ3Cˆ40ˆ55ˆB5 (ˆsymbol used

for XOR)

The resulting byte value 15(Hex) is used to rotate the Sbox.

However, the pseudo code to accompany this does not logically perform the XOR as

described. Provided is a pertinent snippet:

unsigned long int mask=0xff;

...

for(round=1;round<=9;round++)

{

rotate=(expanded key[round*4]ˆexpanded key[round*4+1]

ˆexpanded key[round*4+2]ˆexpanded key[round*4+3])&mask;

...

}

Rotate=(expanded key[40]ˆexpanded key[41]

ˆexpanded key[42]ˆexpanded key[43])&mask;

The rotate value calculated in this pseudo code is only the XOR of 4 bytes, not all

80

16 bytes of the round rotation key. Each expanded key[i] index must be a 4 byte

value. This follows from many details. Traditionally, the expanded key of AES-128 is

represented by a 4x44 matrix of bytes. This is a result of the way the key is expanded

and computed columnwise. The indented rotate value represents rotate computed for

rounds 1 through 9, while the second Rotate value represents rotate computed for round

10. Indices 40-43 are accessing the last four ‘columns’ of the expanded key with indexing

starting at 0. Additionally, for four values to represent 16 bytes in total, each must represent

4 bytes. Tracing out the operation, first, four 4-byte values are XOR’ed resulting in one

4-byte value. This one 4-byte value is then bitwise AND’ed (&) with mask=0xff, the one

byte value 1111 1111b. Thus, depending on endianness, only the most or least significant

byte is saved into rotate. The same logical reduction of round rotation key to round

rotation value using the XOR of all bytes is again used in Case 4, “XOR operation of all

bytes is taken”, however no pseudo code is provided [22].

The last part of the algorithm which is not clearly defined is the Type 2 key schedule.

Two rotation values are calculated, one from the encryption key as in Type 1, and the

second from expanded key1. How this second rotation value is logically formed is not

described in the text which only notes, “These round keys are also used for finding a value

for rotating the S-box, which will be used in generating [the] second set of round keys”.

Below is a pseudo code snippet which describes the second rotation value’s calculation:

for(i=0;i<43;i++)

{

expanded key1[i+1]=expanded key1[i]ˆexpanded key1[i+1];

}

for(i=0;i<=3;i++)

for(j=0;j<=3;j++)

{

81

temp=expanded key1[44]&mask;

temp=temp>>shift1;

shift1=shift1+8;

mask=mask<<8;

shift=shiftˆtemp;

}

create s box(s box,shift);

key expansion(expanded key2,key,s box);

Notably, temp is initialized as an unsigned char and therefor can hold up to a

byte of information; mask, shift, and shift1 are not initialized earlier in this code

section. The first for loop XOR’s each ‘column’ of the expanded key together. The

first time through the loop expanded key1[1] is XOR’ed with expanded key1[0].

The second pass XOR’s expanded key1[2] with expanded key1[1]. At this point

expanded key1[1] is expanded key1[1]ˆexpanded key1[0]. Thus, by the last pass

of the loop, expanded key1[43] = expanded key1[43]ˆexpanded key1[42]ˆ · · ·

ˆexpanded key1[1]ˆexpanded key1[0]. The next nested for loop section is where

lack of explicit details becomes problematic. Ignoring the nested loops and only examining

the contents, these five lines of code appear to XOR several bytes together.

In the first line, temp=expanded key1[44]&mask, mask is used, which is not

initialized in this code section; however, mask is initialized in an earlier pseudo code

section detailing Case 2 encryption. If the same initialization is assumed, let mask=0xff.

Additionally, expanded key1[44] is referenced, however the previous loop only iterates

through expanded key1[43]. As discussed previously, expanded key1must be an array

of length 44 (and so indices 0-43) to represent the 44 ‘columns’ of the expanded key. To

further this interpretation, Case 2 encryption pseudo code only accesses indices 0-43 of

expanded key. Thus, let the 44 reference be assumed to be a typo which should read

82

43. This then makes the first line set temp to the ’first’ byte (most or least significant byte

depending on endianness) of expanded key[43].

Moving to the next line, temp=temp>>shift1, shift1 is unknown. However, as

shift1 is incremented by 8 each iteration, or one byte (as seen in the third line), and temp

holds the value of just one byte, it is logical to assume shift1=0 as the initialization. Thus,

on the first pass, this line has no effect. The third line, shift1=shift1+8, as previously

mentioned increments shift1 by 8, or one byte. The fourth line bit shifts mask to the

left by one byte. This logically agrees with the prior assumption of its initialization. The

last line is the most interesting, shift=shiftˆtemp. shift is not initialized, however,

an initialization to 0 is logical. This would set shift=temp which is the ’first’ byte of

expanded key1[43] on the first pass.

Tracing through subsequent passes, temp is set to the next byte of expanded key1[43]

and bit shifted by one byte so there is not a byte worth of trailing zeros. shift1 and mask

are appropriately updated, and shift is XOR’ed with this second byte. Thus shift is

now the XOR of the first two bytes of expanded key1[43]. After the first four iterations,

shift is the XOR of all four bytes of expanded key1[43], or logically when considering

the prior loop, the XOR of every byte in expanded key1. The utility of the outer for loop

is not apparent. If it is not a misprint, then the resulting value of shift would end up

being 0 (xˆxˆxˆx=0 for any given value x). As the iterators i and j are not referenced in

the content of the loops, each iteration of the outer loop would be exactly the same. Based

on the other calculations performed to reduce the round keys to round rotation values in

Cases 2 and 4, and the reductions of the encryption key for the first rotation values com-

puted in the key schedules, all of which are the XOR of all bytes being handled, it is logical

to assume the nested loops is a typo and this block is intended to XOR all the bytes of

expanded key1.

83

For this research, an implementation of this algorithm was written in Python 2.7

building off of the Scripting Languages Open-source Workable AES (SLOWAES) code

base [8]. First the code’s base functions were tested for proper functionality by using

NIST sample values and walkthroughs [1], and were successfully validated. Next, the

algorithm as best described by [22] and discussed above was implemented on top of

this validated AES implementation. Each step was validated and carefully examined and

stepped through to ensure encryption was following all expected logical flow. The rotate

step specifically was vetted with the example rotated S-box as provided by [22]. Validation

of this implementation of AES-KDS was reliant on the sample encryption data provided in

the paper which is shown below:

Figure A.1: AES-KDS Validation Encryptions [22].

It is important to note that only sample encryptions for Case 4, Type 2 as described

in [22] are provided, and no intermediate steps or key schedule data is available. Thus,

84

validation of this algorithm is wholly dependent on just 8 encryptions and only one

Case can truly be validated. To accomplish this, encryption of the four plaintexts with

the two keys was performed, however the resulting ciphertexts did not match those

provided. Because of the ambiguities described in the prior section, the possibility of a

misinterpretation was reasonable. Thus, iterative encryptions testing these possibilities was

performed. What follows is a description of each moving part tried, and an analysis of how

many combinations were tested.

– Iterative S-box encryption: Is the S-box iteratively rotated between rounds of

encryption? [Yes/No] 2 possibilities.

– Iterative S-box key schedule: Is the S-box iteratively rotated between creation of

expanded key1 and expanded key2? This is handled by a later iterator, 1 possibilities.

– Iterative S-box key schedule to encryption: Is the S-box iteratively rotated between the

key schedule and the encryption rounds? [Yes/No] 2 possibilities.

– How is the round rotation key reduced to the round rotation value? [XOR of all bytes

as logically described/XOR of most significant bytes as in pseudo code/XOR of least

significant bytes as in pseudo code] 3 possibilities.

– In the key schedule, how is the first rotate value calculated? [XOR of all bytes of

encryption key/XOR of all bytes of hardcoded pseudo code key] Because of the importance

of using the correct keys and the lack of explicit definition, all 256 rotation values [0-255]

are used. 256 possibilities.

– In the key schedule, how is the second rotate value shift calculated? [XOR of all bytes

of expanded key1] Because of the lack of explicit definition of how the rotation value is

calculated, and if rotation is iterative with the first performed, all 256 rotation values [0-

255] are used. 256 possibilities.

– Expanded key altered by XOR of columns [Yes/No] 2 possibilities.

– Next the number of encryption keys checked is discussed. To cover potential

85

implementation specific issues, alternate endianess representations of the two keys for

architectures ranging from 16-bit to 128-bit (excessively large range for completeness)

are used. Note this is only applied to the keys and not plaintext because the all 0 plaintext

will still result in a match. 8 possibilities. When the encryption key is stored as a 4x4

matrix, by design it is to be stored by filling the rows. When the plaintext is stored as a 4x4

matrix, by design it is to be stored by filling the columns. To cover any potential mixup of

these details, the transpose of the key is also checked. 2x possibilities. Totally that makes

(2 + 8) × 2 = 20 encryption keys. 20 possibilities.

– Finally the number of plaintext checked is discussed. As mentioned above, the key and

plaintext are stored in a different indexing. To overcome a potential mixup, the transpose

of each plaintext is also encrypted. 2x possibilities. Totally this makes 4 × 2 = 8 plaintext.

8 possibilities.

When all these moving parts are checked in totality, it amounts to 2×1×2×3×256×

256× 2× 20× 8 = 251, 658, 240 or approximately a quarter of a billion encryptions. All of

these were checked, and no match was found. The authors of the paper were also reached

out to for more validation data, intermediate calculations, or more detail and definition,

but no response was received. Thus, given the thorough validation efforts, and the amount

of ambiguity found in [22], an implementation was chosen which was most logical and

followed most directly from the data provided in the paper. This implementation, RAES,

is logically described in Section 3.2.2, with walk through encryption and key schedule

examples to best facilitate repeatability and future validation and verification provided in

Appendix B.

86

Appendix B: RAES Validation Data

Figure B.1: AES-128 Encryption and Expanded Key of [1] Example Data.

87

Figure B.2: RAES-128 Type 1 Encryption and Expanded Key of [1] Example Data.

88

Figure B.3: RAES-128 Type 2 Encryption and Expanded Key of [1] Example Data.

89

Figure B.4: RAES-128 Type 3 Encryption and Expanded Keys of [1] Example Data.

90

Figure B.5: RAES-128 Type 4 Encryption and Expanded Keys of [1] Example Data.

91

Bibliography

[1] “Advanced Encryption Standard (AES)”. Federal Information Processing Standards
(FIPS) Publication 197. National Institute of Standards and Technology, 2001.

[2] “Annex A: Approved Security Functions for FIPS PUB 140-2”. Security Require-
ments for Cryptographic Modules. National Institute of Standards and Technology,
2014.

[3] “Cryptographic Algorithm Validation Program (CAVP)”. National Institute of
Standards and Technology (NIST), 1 Aug. 2014. URL http://csrc.nist.gov/groups/
STM/cavp/#01.

[4] Bahim, E. and A. Shamir. “Differential Fault Analysis of Secret Key Cryptosystems”.
Proceedings of Advances in Cryptology CRYPTO ’97, 1294:513–525, 1997.

[5] Cretu, M. and C. Apostol. “A Modified Version of Rijndael Agorithm Implemented
to Analyze the Cyphertexts Correlation for Switched S-Boxes”. Proceedings of 2012
9th International Conference on Communications (COMM), 331–334. 2012.

[6] Das, I., S. Roy, S. Nanth, and S. Mondal. “Random S-Box Generation in AES by
changing Irreducible Polynomial”. Proceedings of 2012 International Conference on
Communications, Devices and Intelligent Systems (CODIS), 556–559. 2012.

[7] Dassance, F. and A. Venelli. “Combined Fault and Side-Channel Attacks on the AES
Key Schedule”. Proceedings of 2012 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 63–71. 2012.

[8] Davis, J. and A. Martelli. “Scripting Languages Open-source Workable AES
(SLOWAES)”. Google Project Hosting, 1 March 2014. URL https://code.google.
com/p/slowaes/source/browse/trunk/python/aes.py.

[9] Dutertre, J., A. Mirbaha, D. Naccache, A. Ribotta, A. Tira, and R. Vaschalde. “Fault
Round Modification Analysis of the Advanced Encryption Standard”. Proceedings
of 2012 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), 140–145. 2012.

[10] ElBadawy, E. A., W. A. El-Masry, A. Mokhtar, and A. E. S. Hafez. “A New Chaos
Advanced Encryption Standard (AES) Algorithm for Data Security”. Proceedings of
2010 International Conference on Signals and Electrical Systems, 405–408. 2010.

[11] Endo, S., Y. Li, N. Homma, K. Sakiyama, K. Ohta, and T. Aoki. “An
Efficient Countermeasure Against Fault Sensitivity Analysis Using Configurable
Delay Blocks”. Proceedings of 2012 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), 95–102. 2012.

92

http://csrc.nist.gov/groups/STM/cavp/#01
http://csrc.nist.gov/groups/STM/cavp/#01
https://code.google.com/p/slowaes/source/browse/trunk/python/aes.py
https://code.google.com/p/slowaes/source/browse/trunk/python/aes.py

[12] Feistel, H. “Cryptography and Computer Privacy”. Scientific America, 228:15–23,
1973.

[13] Floissac, N. and Y. L’Hyver. “From AES-128 to AES-192 to AES-256, How to
Adapt Differential Fault Analysis Attacks on KeyExpansion”. Proceedings of 2011
Workshop on Fault Diagnosis and Tolerance in Cryptography, 43–53. 2011.

[14] Fukunaga, T. and J. Takahashi. “Practical Fault Attack on a Cryptographic LSI with
ISO/IEC 18033-3 Block Ciphers”. Proceedings of 2009 International Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), 84–92. 2009.

[15] Juremi, J. “A Proposal for Improving AES S-Box with Rotation and Key-Dependent”.
Proceedings of 2012 International Conference on Cyber Security, Cyber Warefare and
Digital Forensic (CyberSec), 38–42. 2012.

[16] Kim, C. H. “Differential Fault Analysis of AES: Toward Reducing Number of Faults”.
Journal of Information Sciences, 199:43–57, 2012.

[17] Kim, C. H. “Improved Differential Fault Analysis on AES Key Schedule”. IEEE
Transactions on Information Forensics and Security, 7:41–50, 2012.

[18] Lashermes, R., G. Reymond, J. Dutertre, J. Fournier, B. Robisson, and A. Tria. “A
DFA on AES Based on the Entropy of Error Distributions”. Proceedings of 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 34–43. 2012.

[19] Li, W., D. Gu, Y. Wang, J. Li, and Z. Liu. “An Extension of Differential Fault Analysis
on AES”. Proceedings of International Conference on Network and System Security,
443–446. 2009.

[20] Lomne, V., T. Roche, and A. Thillard. “On the Need of Randomness in Fault Attack
Countermeasures - Application to AES”. Proceedings of 2012 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 85–94. 2012.

[21] Luan, H., L. Luo, and Y. Wang. “An S-box Construction Algorithm based
on Spatiotemporal Chaos”. Proceedings of 2010 International Conference on
Communications and Mobile Computing, 61–65. 2010.

[22] N., K. G. and V. Ramanswarmy. “Making AES Stronger: AES with Key Dependent
S-Box”. IJCSNS International Journal of Computer Science and Network Security,
8:388–398, 2008.

[23] Nassar, M., Y. Souissi, S. Guilley, and J.L. Danger. “RSM: A Small and Fast
Countermeasure for AES, Secure Against 1st and 2nd-Order Zero-Offset SCAs”.
Proceedings of 2012 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 1173–1179. 2012.

93

[24] Park, J., S. Moon, D. Choi, Y. Kang, and J. Ha. “Fault Attack for the Iterative
Operation of AES S-Box”. Proceedings of 2010 International Conference on
Computer Sciences and Convergence Information Technology (ICCIT), 550–555.
2010.

[25] Radhakrishnan, S. V. and S. Subramanian. “An Analytical Approach to S-box
Generation”. Proceedings of 2012 International Conference on Communications and
Signal Processing (ICCSP), 1–5. 2012.

[26] Sakiyama, K., Y. Li, M. Iwamoto, and K. Ohta. “Information-Theoretic Approach to
Optimal Differential Fault Analsysis”. IEEE Transactions on Information Forensics
and Security, 7:109–120, 2012.

[27] Stanoyevitch, A. Introduction to Cryptography with Mathematical Foundations and
Computer Implementations. Chapman and Hall/CRC, Taylor and Francis Group,
Boca Raton, FL, USA, 2011.

[28] Tunstall, M., D. Mukhapadhyay, and S. Ali. “Differential Fault Analysis of the
Advanced Encryption Standard Using a Single Fault”. 2011 International Federation
for Information Processing, 6633:224–233, 2011.

[29] Vervaudwhede, I., D. Karaklacjic, and J. Schmidt. “The Fault Attack Jungle -
A Classification Model to Guide You”. Proceedings of 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 3–8. 2011.

[30] Zaibi, G., A. Kachouri, F. Peyrard, and D. Fournier-Prunaret. “On Dynamic Chaotic
S-box”. Proceedings of 2009 Global Information Infrastucture Symposium, 1–5.
2009.

[31] Zaibi, G., A. Kachouri, F. Peyrard, and D. Fournier-Prunaret. “A New Design of
Dynamic S-box based on Two Chaotic Maps”. Proceedings of 2010 International
Conference on Computer Systems and Applications (AICCSA), 1–6. 2010.

[32] Zhao, G., H. Yan, and F. Lu. “Research of Changeable S-Box in Block
Cryptosystem Based on Chaos”. Proceedings of 2007 International Conference on
Communications, Circuits and Systems, 436–441. 2007.

94

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

18–09–2014 Master’s Thesis Oct 2012–Sept 2014

Extending Differential Fault Analysis to Dynamic S-Box Advanced
Encryption Standard Implementations

Flamm, Bradley M., Civilian

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-T-14-S-08

AF Cyberspace Technical Center of Excellence
Attn: Dr. Robert Mills
2950 Hobson Way
WPAFB, OH 45433-7765
(937) 255-3636, Ext. 4738, Robert.Mills@afit.edu

AF CyTCoE

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

AES is a worldwide cryptographic standard for symmetric key cryptography. Many attacks try to exploit inherent
weaknesses in the algorithm or use side channels to reduce entropy. At the same time, researchers strive to enhance AES
and mitigate these growing threats. This paper researches the extension of existing DFA attacks, a family of side channel
attacks, on standard AES to Dynamic S-box AES research implementations. Theoretical analysis reveals an expected

average keyspace reduction of 2−88.9323 after one faulty ciphertext using DFA on the State of Rotational S-box AES-128

implementations. Experimental results revealed an average 2−88.8307 keyspace reduction and confirmed full key recovery
is possible.

15. SUBJECT TERMS

Advanced Encryption Standard, AES, Dynamic S-box, Rotational S-box, RAES, Differential Fault Analysis, DFA

U U U UU 107

Maj Thomas E. Dube (ENG)

(937) 255-3636 x4613 thomas.dube@afit.edu

	Abstract
	Table of Contents
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Research Objectives
	Scope and Limitations
	Approach
	Thesis Organization

	Background
	Cryptology
	AES
	Dynamic S-box
	Brute Force Attacks
	Differential Fault Analysis
	Background Summary

	Theoretical Attack Analysis
	Problem Definition
	Attack Targets and Sources
	Attack Analysis
	Theoretical Attack Summary

	Methodology
	Problem Definition
	System Boundaries
	System Services
	Workload
	Performance Metrics
	System Parameters
	Factors
	Evaluation Technique
	Experimental Design
	Methodology Summary

	Analysis of Experimental Attack Results
	Existing Attack
	Attack Extension
	Design Suggestions
	Analysis Summary

	Conclusion
	Impact
	Contributions
	Future Work

	Appendix A: Discussion of Rotational S-box Design Decisions
	Appendix B: RAES Validation Data
	Bibliography

